Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)
\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)
\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)
\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Thay vào:
\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)
Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Bài 4:
Ta có:
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)
\(=3.40+3^5.40+....+3^{97}.40\)
\(=120(1+3^4+....+3^{96})\vdots 120\)
Ta có đpcm.
a ) 76 + 75 - 74
= 74 ( 72 + 7 - 1 )
= 74. 55 chia hết cho 55
b ) 165 + 215
= ( 24 ) 5 + 215
= 220 + 215
= 215 ( 25 + 1 )
= 215 . 33 chia hết cho 33
c ) 817 - 279 - 913
= ( 34 )7 - ( 33 )9 - ( 32 )13
= 328 - 327 - 326
= 326 ( 32 - 3 - 1 )
= 326 . 5
= 322 . 34 . 5
= 322 . 81 . 5
= 322 . 405 chia hết cho 405
a
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot21⋮7\)
b
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
a)\(5^5-5^4+5^3\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3\times21⋮7\)
b) \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\times55⋮11\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)
\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)
Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)
\(\Rightarrow B< \frac{5}{4}\)(2)
Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)
\(a.\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.7.2⋮14\)
Vậy \(8^7-2^{18}⋮14\)
\(b.\)
\(5^5-5^4+5^3\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.7.3⋮7\)
Vậy \(5^5-5^4+5^3⋮7\)
\(c.\)
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55\)
\(=7^4.5.11⋮11\)
Vậy \(7^6+7^5-7^4⋮11\)
Bài 1:
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^4=0\)
=>2x(2x-1)(2x-2)=0
hay \(x\in\left\{0;\dfrac{1}{2};1\right\}\)
Bài 3:
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Leftrightarrow\dfrac{a-5+10}{a-5}=\dfrac{b-6+12}{b-6}\)
\(\Leftrightarrow\dfrac{10}{a-5}=\dfrac{12}{b-6}\)
\(\Leftrightarrow\dfrac{a-5}{5}=\dfrac{b-6}{6}\)
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{6}\)
hay a/b=5/6
Ta có : \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{b-6}{a-5}=\frac{b+6}{a+5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{b-6}{a-5}=\frac{b+6}{a+5}=\frac{\left(b+6\right)-\left(b-6\right)}{\left(a+5\right)-\left(a-5\right)}=\frac{12}{10}=\frac{6}{5}\)
\(\Rightarrow5\left(b-6\right)=6\left(a-5\right)\Leftrightarrow5b-30=6a-30\Leftrightarrow5b=6a\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)
B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7 + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15
= 0 -0-0-0-0+7/9 +13/15
= 74/45
A=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
=5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
Vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
Vậy 5^5 -5^4+5^3 chia hết cho 7