K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

3 tháng 1 2016

thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách?  ai giải hộ với

 

3 tháng 1 2016

đưa lên câu hỏi người ta làm gì zay

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

23 tháng 7 2015

3^2n+3−24n+37 chia hết cho 64

Suy ra :  n=1\(\Rightarrow\)VT=3^5−24+37=256:64

vậy n =1 mệnh đề đúng  

Vi du mệnh đề đúng với n=k,k\(\in\) N

Tức 3^2k+3−24k+37:64  

Chứng minh mệnh đề trên cũng đúng với k=n+1

Tức chứng minh : 3^2k+5−24k−24+37:64  

Ta có: 3^2k+3.9−24k+13

         =9(3^2k+3−24k+37)+192k−320

         =9(3^2k+3−24k+37)+64(3k−5):64  

         Vay 3^2n+3-24n+37 chia het cho 64

10 tháng 9 2021

a) (2n+8).(5n-5)=2(n+4).5(n-1)=10(n+4)(n-1) chia hết cho 10

b) Ta có 2n+1 và 4n+5 đều là số lẻ nên (2n+1)(4n+5) là số lẻ

=> (2n+1)(4n+5) không chia hết cho 2

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11

Bạn này làm sai r

2 tháng 11 2017

\(\left(n-5\right)⋮\left(n-2\right)\)

=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)

=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)

=> \(-3⋮\left(n-2\right)\)

=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }

ta có bảng sau

n-2 -1 1 -3

3

n 1 3 -1 5
tm tm loại tm

vậy n\(\in\left\{1;3;5\right\}\)