Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 3+32+33+…+399+3100.
= (3+32) + (33+34) +…+399+3100.
=3(1+3) + 33(1+3) + … + 399(1+3)
=3.4 + 33.4 + … + 399.4
=4(3 + 33 + … +399)
=> A = 4(3 + 33 + … +399)
Vì A có một ước là 4 nên A chia hết cho 4.
Ta có : A = 3 + 32 + 33 + 34 + ..... + 399 + 3100
=> A = (3 + 32) + (33 + 34) + ..... + (399 + 3100)
=> A = 3(1 + 3) + 33(1 + 3) + ...... + 399(1 + 3)
=> A = 3.4 + 33.4 + .... + 399.4
=> A = 4(3 + 33 + 35 + ..... + 399)
Mà (3 + 33 + 35 + ..... + 399) là số nguyên
Vậy : A = 4(3 + 33 + 35 + ..... + 399) chia hết cho 4 .
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
ta có 1^3 +2^3+3^3+...+100^3=(1+2+3+4+...+100)^2 \(\Rightarrow\) A chia hết cho B (sách toán 6 tập 1 có đấy)
Tick mk nhé
A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3
\(A=3+3^2+3^3+.....+3^{99}+3^{100}\)
\(A=3.1+3.3+3^3.1+3^3.3+....+3^{98}.1+3^{98}.3\)
\(A=3.\left(3+1\right)+3^3.\left(3+1\right)+......+3^{98}.\left(3+1\right)\)
\(A=3.4+3^3.4+....+3^{98}.4\)
\(A=4.\left(3+3^3+....+3^{98}\right)\) Chia hết cho 4
Vào http://olm.vn/hoi-dap/question/257085.html đi bn mình đánh mỏi tay lắm !