Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)
\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(=5\left(1+...+4^{98}\right)⋮5\)
Gọi 5 số chẵn liên tiếp là a; a+2; a+4; a+6; a+8
Ta có a + (a+2) + (a+4) + (a+6) + (a+8)
= a + a + a + a + a + 2 + 4 + 6 + 8
= 5a + 20
Ta có a \(⋮\) 2 => 5a \(⋮\) 5.2 = 10
20 \(⋮\) 10
=> 5a + 20 \(⋮\) 10
Vậy tổng của 5 số chẵn liên tiếp thì chia hết cho 10
Gọi 5 số lẻ liên tiêp là b; b+1; b+2; b+3; b+4
tương tự b + (b+1) + (b+2) + (b+3) + (b+4) = 5b +20
Do b là số lẻ => 5b có tận cùng là 5
=> 5b + 20 có tận cùng là chữ số 5
=> 5b+20 chia 10 dư 5
\(2^{2n+1}+3^{2n+1}\text{ }\)
\(=4^n\times2+9^n\times3\)
\(=4^n\times2-9^n\times2+9^n\times5\)
\(=-2\left(9^n-4^n\right)+9^n\times5\)
Vậy \(2^{2n+1}+3^{2n+1}⋮5\)
Chúc bạn học tốt