K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005  => 20062006 - 20062005 chia hết cho 2005.

b) 79m+1 - 79= 79m x 79 - 79m = 79x (79 - 1) = 79m x 78 chia hết cho 78  => 79m+1 - 79 chia hết cho 78.

c) 25+ 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1)  = 512 x 5 x 6 = 512 x 30 chia hết cho 30  => 257 + 513 chia hết cho 30.

d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 5x (64 - 5) = 56 x 49 chia hết cho 49  => 106 - 57 chia hết cho 49.

e) 710 - 79 - 7= 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41  => 710 - 79 - 78 chia hết cho 41.

f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45  => 817 - 279 - 913 chia hết cho 45.

12 tháng 8 2016

Cảm ơn

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

19 tháng 8 2016

a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8

19 tháng 8 2016

b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

13 tháng 7 2019

Bài 2 thôi em dùng đồng dư cho chắc:v

a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)

Suy ra đpcm.

b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)

Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)

Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)

Suy ra đpcm

c) Do 41 là số nguyên tố và (2;41) = 1 nên:

\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)

Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)

Suy ra đpcm.

d) Tương tự

11 tháng 11 2021

a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)

\(=\left(4n-12\right)\left(4n-2\right)\)

\(=8\left(n-3\right)\left(2n-1\right)⋮8\)

19 tháng 8 2015

\(8^5+16^4=\left(2^3\right)^5+\left(2^4\right)^4=2^{15}+2^{16}=2^{15}.1+2^{15}.2=2^{15}\left(2+1\right)=2^{15}.3\)

Vậy tổng chia hết cho 3

\(2^8+2^9+2^{10}=2^8.1+2^8.2+2^8.2^2=2^8.\left(1+2+4\right)=2^8.7\)

Vậy tổng chia hết cho 7