Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Ta có : \(1+3+5+...+n\)
\(=\dfrac{\left(\dfrac{n-1}{2}+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(n+1\right)^2}{4}=\left(\dfrac{n+1}{2}\right)^2\) là số chính phương.
https://olm.vn/hoi-dap/detail/10723222015.html vào link này nhé
Ta có:
A=1+3+5+7+...+n(n lẻ)A=1+3+5+7+...+n(n lẻ)
Số số hạng:
n−12+1=n−1+22=n+12(số hạng)n-12+1=n-1+22=n+12(số hạng)
⇒⇒
A=(n+1).n+122=(n+1)(n+1)2:2=(n+1)22.12=(n+1)222=(n+12)2A=(n+1).n+122=(n+1)(n+1)2:2=(n+1)22.12=(n+1)222=(n+12)2
Vậy A là số chính phương.
HokT~
Vì n là số lẻ n=2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\)