K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2015

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{50^2}<\frac{1}{49.50}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+1=2\)

=> \(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)<\frac{1}{2^2}.2=\frac{1}{2}\)(đpcm)

14 tháng 5 2015

ai giúp mk ko vậy?                                

24 tháng 8 2015

\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};\frac{1}{5^2}<\frac{1}{4.5};....;\frac{1}{100^2}<\frac{1}{99.100}\)

=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A<\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)

Vâyk...

24 tháng 8 2015

ta thấy:

1/3^2<1/2.3

1/4^2<1/3.4

.................

1/100^2<1/99.100

=>1/3^2+1/4^2+1/5^2+.........1/100^2<1/2.3+1/3.4+1/4.5+....+1/99.100

=1/2-1/3+1/3-1/4+.........+1/99-1/100

=1/2-1/100<1/2(đpcm)

 
13 tháng 4 2018

a) Có: 1+1/2^2+1/3^2+...+1/100^2<A=1+1/1.2+1/2.3+...+1/99.100

Mà: A=1+1-1/2+1/2-1/3+...+1/99-1/100

=> A=2-1/100<2

=> 1+1/2^2+1/3^2+...+1/100^2<2.

b) Đặt B=1/21+1/22+...+1/60

Tách B thành 2 nhóm:

C=(1/21+1/22+...+1/40)

D=(1/41+1/42+...+1/60)

* Mỗi nhóm C và D có 20 phân số:

** => C+D>(1/40+1/60).20

=> C+D>1/24.20

=> C+D>5/6

Mà: 5/6>11/15=> C+D=B>11/15                      (1)

**  Có: C+D<(1/21+1/41).20

 => C+D<62/861.20

=> C+D<1240/861

Có: 1240/861 xấp xỉ 1,44<1,5

=> C+D=B<3/2                                               (2)

(1) và (2) => đpcm.                                                     

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

18 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

18 tháng 4 2018

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có

\(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>A< \frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

<=>\(A< \frac{1}{2}+\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

<=>\(A< \frac{1}{2}+\left(\frac{1}{2}-\frac{1}{100}\right)\)

<=>\(A< \frac{1}{2}+\frac{49}{100}\)

<=>\(A< \frac{99}{100}< 1\left(\text{Đ}pcm\right)\)

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

1 tháng 11 2017

đó giúp mk đi màkhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroi

à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đóvuiok

giúp mk nhaok

cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 11 2017

những thánh giỏi toán ơi giúp mk được ko

mk năn nỉ đókhocroi

29 tháng 5 2015

1)Đặt A=1+2+22+23+.....+22008

=>2A=2+22+23+....+22009

=>2A-A=(2+22+23+...+22009)-(1+2+22+23+....+22008)

=-1+22009

29 tháng 5 2015

Nhìn là hết muốn làm