\(^n\) +18n-1 chia hết cho 27 ( n là số tự nhiên)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

A = 10n + 18n - 1

A = 10n - 1 - 9n + 27n

A = 99...9 - 9n + 27n

 n chữ số 9

A = 9.(11...1 - n) + 27n

       n chữ số 1

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 11..1 - n chia hết cho 3

                                                                                                          n chữ số 1

=> 9.(11...1 - n) chia hết cho 27 mà 27n chia hết cho 27

    n chữ số 1 

=> đpcm

10 tháng 5 2015

1.

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

đúng cái nhe bạn

10 tháng 5 2015

2.

Gọi d là ƯCLN (16n+3; 12n+2)

=> 16n+3 chia hết cho d; 12n+2 chia hết cho d

Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d

=> 48n+9 chia hết cho d; 48n+8 chia hết cho d

=> (48n+9)-(48n+8) chia hết cho d

=>            1           chia hết cho d

=> d \(\in\) {1; -1}

Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nhé  

NM
24 tháng 3 2022

ta sẽ chứng minh bằng quy nạp

Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)

Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)

Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)

Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)

Do đó điều kiện đúng với n+1 

Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n

21 tháng 8 2016

10^n +18n-1 chia hết cho 27

->10....0 +18n-1

->(99...9 +1)+18n-1

-> 99...9 +18n

->9(111..1)+2n 

 mà 11...1 =9k+(11..11)

=9k+n

=9(9k+n+2n)

=9(9k+3n)

=9x3(k+n)

=27(k+n) chia hết cho 27(điều phải chứng minh)

k nha ban hiền

16 tháng 1 2018

ngắn gọn khó hiểu

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )

19 tháng 7 2016

a) 2n + 111...1 = 3n + (111..1 - n)

         n chữ số          n chữ số

Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3

Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3

                                          n chữ số

b) 10n + 18n - 1

= 100...0 - 1 - 9n + 27n

 n chữ số 0

= 999...9 - 9n + 27

n chữ số 9

= 9.(111..1 - n) + 27n

    n chữ số 1

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3

=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27

=> 10n + 18n - 1 chia hết cho 27

c) 10n + 72n - 1

= 100...0 - 1 + 72n

n chữ số 1

= 999...9 - 9n + 81n

n chữ số 9

= 9.(111...1 - n) + 81n

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9

Típ theo lm tương tự câu trên

15 tháng 12 2016
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). => 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
4 tháng 7 2021

Có : 

10n + 18n -1  =   10n -1+ 18n

= 100...0  ( n chữ số 0 )   - 1  + 18n 

99...9 ( n chữ số 9 ) + 18n 

= 9 [ 11...1    ( n chữ số 1 ) +  2n ] 

Dễ thấy 11..1 ( n chữ số 1 ) có tổng các các  chữ số là n 

=> 11..1 ( n chữ số 1 ) + 2n = n+ 2n = 3n \(⋮\)

vì 11..1 ( n chữ số 1 )  + 2n  \(⋮\)

=> 9 [ 11..1  ( n chữ số 1 ) + 2n ] \(⋮\) 27  hay 10n + 18n -1 \(⋮\) 27 ( đpcm )

Những lần mình ghi n chữ số 1 hoặc 9 hoăc 10 thì bạn có thể ngoắc  ở dưới số đó luôn vì trên này không viết được như thế !