Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 310+311
= 310.1+ 310.3
= 310.(1+3)
= 310.4
=>achia hết cho 4
tik cho miu đã rùi mik giải tiếp cho
a)
10^33 có dạng 10...0
=> 10^33 + 8 có dạng 10...08 chia hết cho 2
=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9
b) c) d) tương tự
a) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )
( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )
b) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )
( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )
d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9
Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0
cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3
Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9
\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9
Câu b mk hông biết bạn tự làm nha
Hk tốt
A = 2 + 22 + 23 + ... + 220
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 217(1+2+22+23)
A = 15.(2+25+...+217) chia hết cho 5
=> đpcm
a) 1033 + 8 chia hết cho 9 và 2 .
Ta có : 1033 = 1 000 ... 000(33 chữ số 0)
1 000 ... 000( 21 chữ số 0) + 8 = 1 000 ... 008(20 chữ số 0)
Vì 1 000 ... 008(20 chữ số 0) có chữ số tận cùng là 8\(⋮\)2 nên 1033 + 8 chia hết cho 2
1 + 0 + 0 + 0 + ... + 0 + 0 + 8(20 chữ số 0) = 9 mà 9\(⋮\)9 nên 1 000 ... 008(20 chữ số 0) \(⋮\)9 => 1033 + 8 chia hết cho 9
Phần b làm tương tự
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
a) 3^10+3^11=3^10 x(1+3)
=3^10 x4
=> 3^10+3^11 chia hết cho 4
a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 \(\Rightarrow\) 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 \(\Rightarrow\) 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) \(\Rightarrow\) 1028 + 8 chia hết cho 72 (do 8.9=72)
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)