![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(x - 45) . 27 = 0
x-45=0:27
x-45=0
x=0+45
x=45.
b)23 . (42 - x) = 23
42-x=23:23
42-x=1
x=42-1
x=41
Câu 1:
a)(x-45)*27=0.
=>x-45=0:27.
=>x-45=0.
=>x=0+45.
=>x=45.
Vậy......
b)23*(42-x)=23.
=>42-x=23:23.
=>42-x=1.
=>x=42-1.
=>x=41.
Vậy....
Câu 2:Có vấn đề về đề bài.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2
=3n+(1+2+3)
=3n+6.
=3(n+2)
Vì n+2EN.
=>3(n+2) chia hết cho 3.
b)Cách lm tương tự.
Ủng hộ nhá!
a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 ( không chia hết cho 4 )
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
![](https://rs.olm.vn/images/avt/0.png?1311)
A= 1+3+32+33+...+399
A= (1+3+32+33)+...+(396+397+398+399)
A= (1+3+32+33)+...+396(1+3+32+33)
A= 40 + ... + 399.40
Vì 40 chia hết cho 40 nên A chia hết cho 40
Chúc bn học tốt
\(A=1+3+3^2+...+3^{99}=\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40+...+3^{99}.40=40\left(1+3^{99}\right)⋮40\)
Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Do (x - 7)(x + 3) < 0
=> x - 7; x + 3 khác dấu
Mặt khác x - 7 < x + 3
=> \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)<=> -3 < x < 7
Vậy x = -2; -1; 0; 1; 2; 3; 4; 5; 6
@pham thu hoai
\(\left(x-7\right)\left(x+3\right)< 0\)
Suy ra x-7 và x+3 ngược dấu
Xét \(\left\{\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x>7\\x< -3\end{matrix}\right.\) (loại)
Xét \(\left\{\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)(thỏa mãn)
Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=1-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{99}{100}\)
Vì \(\frac{99}{100}-2=-\frac{101}{100}\) là số âm
Nên \(\frac{99}{100}< 2\).Vậy ta được đpcm
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+...+\frac{1}{100.101}< \frac{1}{4}\)
Đặt A = \(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+....+\frac{1}{100.101}\)
A = \(\frac{1}{38}-\frac{1}{39}+\frac{1}{40}-\frac{1}{41}+.....+\frac{1}{100}-\frac{1}{101}\)
A = \(\frac{1}{38}-\frac{1}{101}\)
A = \(\frac{63}{3838}\)
Ta thấy \(\frac{63}{3838}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)
Lập luận: 1/38.39 = 1/38 - 1/39
1/40.41 = 1/40 - 1/41
1/42. 43 = 1/42 - 1/43
....
1/100.101 = 1/100 - 1/101
Gọi phép tính trên là A. Ta có:
1/38 - 1/39 + 1/40 - 1/41 + 1/42 - 1/43 + ...+ 1/100 - 1/101
= 1/38 - 1/101 , vì 1/38 - 1/101 < 1/4 nên phép tính trên bé hơn 1/4. (nếu cần kĩ hơn thì làm ra kết quả rồi so sánh luôn)
A=1+3+32+33+34+...+399
A=30+31+32+34+...+399
⇒A=30.(1+3+9+27)+...+396.(1+3+9+27)
⇒A=30.40+...+396.40
⇒A=(30+...+396).40⋮40
⇒đpcm