Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì trong tổng n2 +7n + 22 có số 22 không chia hết cho 9 nên tổng này không chia hết cho 9
Mạc dù vậy nhưng nếu n2+7n chi cho 9 dư 5 thì tổng vẫn chia hết cho 9
Lời giải:
1)
Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)
\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)
\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)
Do đó \(A\vdots 405\) (đpcm)
2)
Ta thấy : \(12^{2}\equiv 11\pmod {133}\)
\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)
\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)
\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)
Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)
3)
Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)
Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)
Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)
Do đó ta có đpcm.
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm
Câu 2 nè:
Ta có:2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)
\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
=>đpcm
nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu "'*" thui
ta có : \(9\text{ chia 4 dư 1 nên }9^n\text{ chia 4 dư 1}\)
nên \(9^n+1\text{ chia 4 dư 2 nên không chia hết cho 100}\)