K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

Ta thấy: 9 đồng dư với 1(mod 4)

=>9n đồng dư với 1n(mod 4)

=>9n đồng dư với 1(mod 4)

=>9n+1 đồng dư với 1+1(mod 4)

=>9n+1 đồng dư với 2(mod 4)

=>9n+1:4(dư 2)

=>9n+1 không chia hết cho 4

=>ĐPCM

9 đồng dư với 1(mod 4)

=>9n đồng dư với 1(mod 4)

=>9n=4k+1

=>9n+1=4k+2 không chia hết cho 4

=>đpcm

15 tháng 8 2018

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

9 tháng 1 2019

Đặt A=\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2-n+1\right)\left(n^2+n+1\right)\)

Vì \(n⋮3\Rightarrow̸n=3k\pm1\)

Với n=3k+1 thì A=(3k+1-1)(3k+1+1)[(3k+1)^2-3k-1+1].[(3k+1)^2+3k+1+1]

\(=3k\left(3k+2\right)\left(9k^2+6k+1-3k-1+1\right)\left(9k^2+6k+1+3k+1+1\right)\)

\(=3k\left(3k+2\right)\left(9k^2+3k+1\right)\left(9k^2+9k+3\right)\)

\(=9k\left(3k+2\right)\left(9k^2+3k+1\right)\left(3k^2+3k+1\right)⋮9\)

Với n=3k-1 thì A=(3k-1-1)(3k-1+1)[(3k-1)^2-3k+1+1].[(3k-1)^2+3k-1+1]

\(=3k\left(3k-2\right)\left(9k^2-6k+1-3k+1+1\right)\left(9k^2-6k+1+3k-1+1\right)\)

\(=3k\left(3k-2\right)\left(9k^2-9k+3\right)\left(9k^2-3k+1\right)\)

\(=9k\left(3k-2\right)\left(3k^2-3k+1\right)\left(9k^2-3k+1\right)⋮9\)

Từ 2 trường hợp trên => đpcm

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

17 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

17 tháng 9 2018

thằng đấy xàm vãi, không biết nó có phải là con trai nữa ko biết

31 tháng 8 2016

mình chỉ làm đc ý thứ nhất thui

bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12 
xét hiệu n+5-(n+2)=3chia hết cho 3 
=>n+5và n+2 có cùng số dư khi chia cho 3 
+xét n+5 và n+2 có cùng số dư khác 0: 
=>(n+5)(n+2) không chia hết cho 3 
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3 
+xét n+5 và n+2 cùng chia hết cho 3 
=>(n+5)(n+2) chia hết cho 9 
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9 
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13 

31 tháng 8 2016

Lớp 8 là em xin quỳ

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la só t­­­­­­­­­­u nhiên thì n.2+n+1 ko chia hết cho 9 

19 tháng 4 2020

a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4

b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6

15 tháng 8 2021

abcdefjhijklmnopqrstuvwxyz