Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 78 :
Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1
Ta có : A có 10 số hạng
Vậy A = (...1) + (...1) + .... + (..1) = (...0)
A có chữ số tận cùng là 0 nên A chia hết cho 5
78/ \(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)
\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)
\(A=11^{10}\text{-}1\)
\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
a/ \(10^9+2=\left(10....0\right)+2=\left(100...02\right)⋮3\) (do có tổng các c/s chia hết cho 3)
b/ \(10^{50}-1=\left(100...0\right)-1=\left(99...9\right)⋮9\) (do tổng các c,s chia hết cho 9)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
29 chia hết cho 22 và 219 chia hết cho 22
nên \(2^9+2^{19}⋮4\)(1)
Mà \(2^9+2^{19}=2^9\left(2^{10}+1\right)=2^9.1025⋮25\) (2) (vì 1025 chia hết cho 25)
Từ (1) và (2) ta có: \(2^9+2^{19}⋮\left(4.25\right)\) (vì 4 và 25 nguyên tố cùng nhau)
hay \(\left(2^9+2^{19}\right)⋮100\)
Thưa bạn, bạn trình bày vẫn chưa được nhé, phần 1 + 210 = 1025 ấy, không phải tính cụ thể đâu
Ta có: 8+0+0+...+0+1=9 chia hết cho 9
=>8100-1 chia hết cho 9
Vậy 8100-1 chia hết cho 9
bn Nguyễn minh tiệp làm sai rồi làm sao mà 8^100 =8000...0 đc