Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)
\(\Rightarrow\left[\left(7x+1\right)+\left(x+7\right)\right]\left[\left(7x+1\right)-\left(x+7\right)\right]=\left(7^2-1^2\right)\left(x^2-1^2\right)\)
\(\Rightarrow\left(8x+8\right)\left(6x-6\right)=\left[\left(7+1\right)\left(7-1\right)\right]\left[\left(x+1\right)\left(x-1\right)\right]\)
\(\Rightarrow8\left(x+1\right)\cdot6\left(x-1\right)=8\left(x+1\right)\cdot6\left(x-1\right)\)( đpcm )
Bài 1:
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\left(4x-4x+5\right)\left(4x+4x-5\right)=15\)
\(\Leftrightarrow5\left(8x-5\right)=15\)
\(\Leftrightarrow8x=8\Leftrightarrow x=1\)
Vậy x = 1
Bài 2:
\(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)
\(=\left(7x+1-x-7\right)\left(7x+1+x+7\right)\)
\(=\left(6x-6\right)\left(8x+8\right)\)
\(=48\left(x-1\right)\left(x+1\right)\)
\(=48\left(x^2-1\right)=VP\)
\(\Rightarrowđpcm\)
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)
để đa thức 2x2 + 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0
=>6-7a+2a2=0
<=>2a2-4a-3a+6=0
<=>2a(a-2)-3(a-2)=0
<=>(a-2)(2a-3)=0
=> a=2 hoặc a=3/2
Vậy vớia=2 hoặc a=3/2 thì đa thức 2x2 + 7x + 6 chia hết cho x+a
bài 1
n lẻ nên đặt n=2k+1 (k thuộc Z)
Ta có n3-3n2-n+3=n2(n-3)-(n-3)
=(n-3)(n-1)(n+1)
=(2k+1-3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)
=8.(k-1).k.(k+1)
Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6
Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48
(7x - 1)2 - (x+7)2 = 48(x2 - 1)
<=> 49x2 + 14x + 1 - x2 - 14x - 49 = 48x2 - 48
<=>48x2 - 48 = 48x2 - 48
<=> 0x = 0(luôn đúng)
Vậy ĐPCM
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
Xét \(\left(7x+1\right)^2-\left(x+7\right)^2-48\left(x^2-1\right)\)
\(=49x^2+14x+1-x^2-14x-49-48x^2+48\)
\(=0\)
Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)