Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{22}\cdot17\)
17 chia hết 17 nên 222 . 17 chia hết 17 => dpcm
b/ \(19^{19}+69^{19}=\left(19+69\right)\left(19^{19-1}-19^{19-2}\cdot69+19^{19-3}\cdot69^2-19^{19-4}\cdot69^3+...+69^{19-1}\right)\)
\(=88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)
88 chia hết 44 nên \(88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)chia hết 44 => dpcm
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Ta có:\(2^{2^{2n}}=\left(2^2\right)^{2n}=4^{2n}=\left(4^2\right)^n=16^n\)
Ta có:16 đồng dư với 2 (mod 7)
=>16n đồng dư với 2n(mod 7)
=>16n chia 7 dư 2
=>16n+5 chia hết cho 7
Ta có: \(a^6-1=\left(a^3+1\right)\left(a^3-1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)
* a không chia hết cho 7 nên a có 6 dạng: 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6
+) a = 7k + 1
\(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(7k+1-1\right)\left(a^2+a+1\right)\)
\(=7k\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 2
\(\Rightarrow a^2=\left(7k+2\right)^2=49k^2+28k+4\)
\(\Rightarrow a^2+a+1=\left(49k^2+28k+4+7k+2+1\right)\)
\(=49k^2+35k+7⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 3
\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)
\(\Rightarrow a^2+a+1=\left(49k^2+42k+9-7k-3+1\right)\)
\(=49k^2+35k+7⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 4
\(\Rightarrow a^2=\left(7k+4\right)^2=49k^2+56k+16\)
\(\Rightarrow a^2+a+1=\left(49k^2+56k+16+7k+4+1\right)\)
\(\Rightarrow a^2+a+1=\left(49k^2+63k+21\right)⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 5
\(\Rightarrow a^2=\left(7k+5\right)^2=49k^2+70k+25\)
\(\Rightarrow a^2-a+1=\left(49k^2+70k+25-7k-5+1\right)\)
\(=\left(49k^2+63k+21\right)⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 6
\(\Rightarrow a^2=\left(7k+6\right)^2=49k^2+84k+36\)
\(\Rightarrow a^2+a+1=\left(49k^2+84k+36+7k+5+1\right)\)
\(=49k^2+91k+42⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
Vậy \(a^6-1⋮7\)với mọi a không là bội của 7
Ta có :
4(4n2-2n+13) = 16n2 - 8n + 52 =(4n-1)2 + 51
+) Nếu (4n-1) không chia hết cho 17 =>4(4n2-2n+13) không chia hết cho 17 (vì 51=17.3)
=>4n^2-2n+13 ko chia hết cho 17 hay ko chia hết cho 172=289
+) Nếu (4n-1) chia hết cho 17 =>(4n-1)2 chia hết cho 172=289
Mà 51 không chia hết cho 289
=>4(4n^2-2n+13) ko chia hết cho 289 =>4n^2-2n+13 không chia hết cho 289
Vậy 4n^2-2n+13 ko chia hết cho 289 với mọi n (đpcm)
bài này dùng đồng dư nha bạn
mình nghĩ bạn chưa học đâu
thật ra mình cũng chưa học nhung nếu bạn thật sự tò mò hãy tra mạng nhé