Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
439 + 440 + 441 chia hết cho 28
Ta có : 28 = 4 x 7
Gọi B = 439 + 440 + 441
B = 439 + 440 + 441
B = 439 ( 1 + 4 + 16 )
B = 439 21 chia hết cho 4 và 7 vì 439 chia hết cho 4 và 21 chia hết cho 7
=> B chia hết cho 28
Ta có 106 - 57 = 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
Vậy 106 - 57 chia hết cho 59
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)
Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)
b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm
a)Ta có:\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=>\(7^6+7^5-7^4⋮55\)
b)\(A=1+5+5^2+...+5^{50}\)
\(5A=5\left(1+5+5^2+...+5^{50}\right)=5+5^2+5^3+...+5^{51}\)
\(5A-A=5+5^2+5^3+...+5^{51}-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(\Rightarrow A=\dfrac{5^{51}-1}{4}\)
a) \(7^6+7^5+7^4=7^4\left(7^2+7+1\right)\)
= \(7^4.55\)
Vậy: \(7^6+7^5+7^4\) chia hết cho 55.
b) A= \(1+5+5^2+5^3+5^4+.....+5^{50}\)
5A= 5+\(5^2+5^3+5^4+5^{51}\)
5A-A= 5+\(5^2+5^3+5^4+......+5^{51}\)\(-\left(1+5^2+5^3+5^4+......+5^{51}\right)\)
4A= 5+\(5^2+5^3+5^4+......+5^{51}\)\(-1-5-5^2-5^3-5^4-.......-5^{50}\)
= \(5^{51}-1\)
Vậy A= \(\left(5^{51}-1\right):4\)
Tick mk nha!
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
Mình sửa đề chút nha Tìm a bik \(\frac{7}{2}< a< \frac{5}{6}\)
Theo bài ra , ta có :
\(=\frac{21}{6}< a< \frac{5}{6}\)
=) a không thỏa mãn đề bài