K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

Ta có (5n + 2)- 4 = 5n2 + 22 - 4

=> (5n + 2)- 4 = 5n2 chia hết cho 5

3 tháng 10 2016

Nguyễn Quang Trung: (5n+ 2)^2 = (5n + 2) (5n +2) khác 5n^2 + 2^2 nhé!

(5n+2)^2 - 4 = 25n^2 + 20n + 4 -4 = 25n^2 + 20n

25n^2 chia hết cho 5; 20n chia hết cho 5 =>  đpcm

28 tháng 8 2018

Ta có: \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)\)

                                             \(=5n\left(5n+4\right)\)

                                               \(=25n^2+20n\)

Nx: \(25n^2⋮5\)với mọi \(n\inℤ\)

        \(20n⋮5\)với mọi \(n\inℤ\)

\(\Rightarrow25n^2+20n⋮5\)với mọi \(n\inℤ\)

Vậy \(\left(5n+2\right)^2-4⋮5\)với mọi số nguyên n

28 tháng 8 2018

\(\left(5n+2\right)^2-4=25n^2+10n+4-4=25n^2+10n\)

-Mà: \(\hept{\begin{cases}25n^2⋮5\\10n⋮5\end{cases}}\Rightarrowđpcm\)

1 tháng 8 2017

Ta có : (5n + 2)2 – 4

= 25n2 + 20n + 4 - 4

= 25n2 + 20n

= 5(5n2 + 4n) chia hết cho 5

14 tháng 8 2017

Ta có \(\left(5n+2\right)^2-4\)

=\(25n^2+20n+4-4\)

=\(25n^2+20n\)

=\(5\left(5n^2+4n\right)⋮5\)

30 tháng 7 2018

Ta có: \(\left(5n+2\right)^2-4=\left(5n+2\right)^2-2^2\)

\(=\left(5n+2-2\right)\left(5n+2+2\right)\)

\(=5n\left(5n+4\right)\)

Vì tích \(5n\left(5n+4\right)\text{ có chứa }5\left(n\inℤ\right)\)

\(\Rightarrow5n\left(5n+4\right)⋮5\forall n\inℤ\)

30 tháng 7 2018

\(\left(5n+2^{ }\right)^2-4=\left(5n+2\right)^2-2^2\)

                                  \(=\left(5n+2-2\right)\left(5n+2+2\right)\)

                                   \(=5n\left(5n+4\right)\)

Vì tích 5n(5n+4) có chứa 5 và n ∈ Z

do đó 5n(5n+4) ⋮ 5 ∀ n ∈ Z

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

4 tháng 9 2016

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

                              = (5n + 2 - 2)(5n + 2 + 2)

                               = 5n(5n + 4)

Vì 5  5 nên 5n(5n + 4)  5 ∀n ∈ Z.

20 tháng 8 2016

Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)

\(=25n^2+20n=5n\left(5n+4\right)\)

Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)

=> \(\left(5n+2\right)^2-4⋮5\)

Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.

Vậy: \(n^3-n⋮3\)

Bài 3: \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2=4,x=3\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)

20 tháng 8 2016

Câu 1:

Ta có:(5n+2)2-4=25n2+20n+4-4

                         =5.5n2+5.4n

                         =5.(5n2+4n)

       Vì 5.(5n2+4n) chia hêt cho 5

Suy ra:(5n+2)2-4

Câu 2:

Ta có:

n3-n=n.n2-n

       =n.(n2-1)

      =(n-1).n.(n+1)

       Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp

 Mà (n-1).n.(n+1) chia hết cho 3(1)

              Và (n-1).(n+1) chia hêt cho 2(2)

Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6

 

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

11 tháng 8 2020

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

11 tháng 8 2020

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM