K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Ta có:

(5n + 2)2 – 4

= (5n + 2)2 – 22

= (5n + 2 – 2)(5n + 2 + 2)

= 5n(5n + 4)

Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.

Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ

4 tháng 9 2016

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

                              = (5n + 2 - 2)(5n + 2 + 2)

                               = 5n(5n + 4)

Vì 5  5 nên 5n(5n + 4)  5 ∀n ∈ Z.

27 tháng 8 2016

Ta có : \(\left(5n+2\right)^2-4\)

         \(=\left(5n+2-2\right).\left(5n+2+2\right)\)

         \(=5n\left(5n+4\right)\)

Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)

 

27 tháng 8 2016

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) 
Mà 5 chia hết cho 5 
-->5n(5n + 4) chia hết cho 5

20 tháng 4 2017

Bài giải:

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

= (5n + 2 - 2)(5n + 2 + 2)

= 5n(5n + 4)

Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.

9 tháng 10 2017

\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)

\(= (5n +2 - 2) (5n + 2 + 2 )\)

\(= 5n(5n + 4)\)

\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)

Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)

21 tháng 9

(n^2 - 3n + 1)(n + 2) - n^3 + n^2 - 2

=(n^2 - 2n + 4 - n - 3 )(n + 2) - n^3 + n^2 - 2

=(n^2 - 2n + 4 )(n + 2) - (n + 2)(n + 3 ) - n^3 + n^2 - 2

=n^3 + 2^3 - n^2 - 5n-6 - n^3 + n^2 - 2

= 5n chia hết cho 5 với mọi n là số nguyên

3 giờ trước (14:57)

bạn nhân hết ra rồi phân tích nhân tử sẽ đc tích của 5 số liên tiếp, trong 5 số liên tiếp chắc chắn sẽ có mọt số chia hết cho 5

⇒ cả cụm tích đó chia hết cho 5

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

8 tháng 10 2018

Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)

\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)

\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

Sửa đề thành: \(2^{5n+3}+5^n.3^{n+2}\) mới đúng bạn nhé.

Ta có:

\(2^{5n+3}+5^n.3^{n+2}=8.2^{5n}+5^n.3^n.9\)

\(=8.32^n+9.15^n\)

Thấy rằng: \(32\equiv 15\pmod {17}\Rightarrow 8.32^n\equiv 8.15^n\pmod {17}\)

\(\Rightarrow 8.32^n+9.15^n\equiv 8.15^n+9.15^n\equiv 17.15^n\equiv 0\pmod {17}\)

Tức là: \(2^{5n+3}+5^n.3^{n+2}=8.32^n+9.15^n\vdots 17\) với mọi số $n$ không âm.

17 tháng 7 2018

cách khác :

+ nếu \(n=1\) ta có : \(2^{5n+3}+5^n.3^{n+2}=391⋮17\)

+ giả sử \(n=k\) thì \(2^{5k+3}+5^k.3^{k+2}⋮17\)

khi đó nếu \(n=k+1\) \(\Rightarrow2^{5n+3}+5^n.3^{n+2}=2^{5\left(k+1\right)+3}+5^{k+1}.3^{k+1+2}\)

\(=2^{5k+3+5}+5^{k+1}.3^{k+2+1}=2^{5k+3}.2^5+5^k.3^{k+2}.5.3\)

\(=15\left(2^{5k+3}+5^k+3^{k+2}\right)+17.2^{5k+3}⋮17\)

\(\Rightarrow\left(đpcm\right)\)