K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

52n+1.2n+2+3n+2.22n+1=52n.5.2n.22+3n.32.22n.2

=(25n.2n)(5.4)+(3n.4n)(9.2)=50n.20+12n.18

50 đồng dư với 12 (mod 38)

=>50n đồng dư với 12n (mod 38)

12 đồng dư với 12 (mod 38)

=>12n đồng dư với 12n (mod 38)

=>50n.20+12n.18 đồng dư với 12n.20+12n.18=12n.38 đồng dư với 0(mod 38)

=>52n+1.2n+2+3n+2.22n+1 chia hết cho 38

=>đpcm

27 tháng 7 2017

1) 2n - 9 chia hết cho n+3

\(\Rightarrow2n-9=2n+6-15=2\left(n+3\right)-15\)chia hết cho n + 3 

Vậy n + 3 thuộc Ư(15)

n + 3 \(\in\)Ư(15) = { 1,3,5,15,-1,-3,-5,-15}

Lập bảng ra nhé 

2) \(4n+5=4n-24+29=4\left(n-6\right)+29⋮n-6\)

Vậy n-6 \(\in\)Ư(29)

n - 6 \(\in\){ 1,29,-1,-29}

\(\in\){ 7 ; 35 ; 5 ; -23}

27 tháng 7 2017

3) \(3n+7=3n+3+4=3\left(n+1\right)+4⋮n+1\)

=> n + 1 \(\in\)Ư(4)

n + 1 \(\in\){ 1,2,4,-1,-2,-4}

Sau đó bạn lập bảng rồi tìm n

4) 12 chia hết cho n-5 nên n - 5 \(\in\)Ư(12)

=> n - 5 \(\in\){ 1,2,3,4,6,12,-1,-2,-3,-4,-6,-12}

5) -15 chia hết cho n +  6 

=> n + 6 thuộc Ư(-15) 

Hay n + 6 thuộc { 1,3,5,15,-15,-3,-5,-1}

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

6 tháng 1 2016

umk mình cũng nghĩ vậy để mk coi lại

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

6 tháng 2 2021

\(\frac{\left(n+1\right)\left(3n+2\right)}{2}=\frac{3n^2+5n+2}{2}=\frac{3}{2}n^2+\frac{5}{2}n+1\)

9 tháng 11 2016

_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_

ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do

11 tháng 11 2015

Với n=1 => 3.1+1 chia hết cho 11-2.1

=> 4 chia hết cho 9 

-> sai