Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2n - 9 chia hết cho n+3
\(\Rightarrow2n-9=2n+6-15=2\left(n+3\right)-15\)chia hết cho n + 3
Vậy n + 3 thuộc Ư(15)
n + 3 \(\in\)Ư(15) = { 1,3,5,15,-1,-3,-5,-15}
Lập bảng ra nhé
2) \(4n+5=4n-24+29=4\left(n-6\right)+29⋮n-6\)
Vậy n-6 \(\in\)Ư(29)
n - 6 \(\in\){ 1,29,-1,-29}
n \(\in\){ 7 ; 35 ; 5 ; -23}
3) \(3n+7=3n+3+4=3\left(n+1\right)+4⋮n+1\)
=> n + 1 \(\in\)Ư(4)
n + 1 \(\in\){ 1,2,4,-1,-2,-4}
Sau đó bạn lập bảng rồi tìm n
4) 12 chia hết cho n-5 nên n - 5 \(\in\)Ư(12)
=> n - 5 \(\in\){ 1,2,3,4,6,12,-1,-2,-3,-4,-6,-12}
5) -15 chia hết cho n + 6
=> n + 6 thuộc Ư(-15)
Hay n + 6 thuộc { 1,3,5,15,-15,-3,-5,-1}
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
\(\frac{\left(n+1\right)\left(3n+2\right)}{2}=\frac{3n^2+5n+2}{2}=\frac{3}{2}n^2+\frac{5}{2}n+1\)
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do
Với n=1 => 3.1+1 chia hết cho 11-2.1
=> 4 chia hết cho 9
-> sai
52n+1.2n+2+3n+2.22n+1=52n.5.2n.22+3n.32.22n.2
=(25n.2n)(5.4)+(3n.4n)(9.2)=50n.20+12n.18
50 đồng dư với 12 (mod 38)
=>50n đồng dư với 12n (mod 38)
12 đồng dư với 12 (mod 38)
=>12n đồng dư với 12n (mod 38)
=>50n.20+12n.18 đồng dư với 12n.20+12n.18=12n.38 đồng dư với 0(mod 38)
=>52n+1.2n+2+3n+2.22n+1 chia hết cho 38
=>đpcm