Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
A=\(x^2+6x+9+1\)
=\(\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x
=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x
Vậy A luôn luôn dương với mọi x
B=4\(x^2-4x+1+2\)
=\(\left(2x-1\right)^2+2\)
Vì\(\left(2x-1\right)^2\ge0\forall\) x
=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)
Vậy B luôn luôn dương với x thuộc R
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
1) 4x2+4x+2=(4x2+4x+1)+1=(2x+1)2+1>0 với mọi x
2) (x-3)(x-5)+44=(x2-8x+16)+43=(x-4)2+43>0 với mọi x
\(M=18+4x-8y+6xy+5x^2+10y^2\)
\(=\left(x^2+6xy+9y^2\right)+\left(4x^2+4x+1\right)+\left(y^2-8y+16\right)+1\)
\(=\left(x+y\right)^2+4\left(x+\frac{1}{2}\right)^2+\left(y-4\right)^2+1\)
Có \(\left(x+y\right)^2\ge0\forall xy\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow M\ge1\forall x,y\)
hay \(M>0\forall x,y\)
Lời giải:
1. Dấu giữa (x+3) và (2x+3)2 là gì vậy bạn?
2.
$E=(4x^2-12x)-(x^2-10x+25)-3(x+1)^2+4(x+1)^2-4x^2+5$
$=4x^2-12x-x^2+10x-25+(x+1)^2-4x^2+5$
$=4x^2-12x-x^2+10x-25+x^2+2x+1-4x^2+5$
$=(4x^2-x^2+x^2-4x^2)+(-12x+10x+2x)+(-25+1+5)$
$=-19$ là giá trị không phụ thuộc vào biến (đpcm)
\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-[\left(2x+1\right)^2+1]\)
Ta có \(\left(2x+1^2\right)\ge0\)\(=>-[\left(2x+1\right)^2+1]\le-1< 0\)
Vậy ...
Học tốt nha !