Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\dfrac{4^2}{20.24}+\dfrac{4^2}{24.28}+...+\dfrac{4^2}{76.80}\)
A=\(\dfrac{16}{20.24}+\dfrac{16}{24.28}+...+\dfrac{16}{76.80}\)
A=4.[\(\dfrac{4}{20.24}+\dfrac{4}{24.28}+...+\dfrac{4}{76.80}\)]
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{28}+...+\dfrac{1}{76}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}+\dfrac{1}{24}-\dfrac{1}{24}+\dfrac{1}{28}-\dfrac{1}{28}+...+\dfrac{1}{78}-\dfrac{1}{78}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{80}\right]\)
A=4.\(\dfrac{3}{80}\)
A=\(\dfrac{3}{20}\)<1
=>A<1
Tick mink nha
\(76.\left(-42\right)+76.\left(-14\right)+24.\left(-56\right)\)
\(=76.\left(-42+-14\right)+24.\left(-56\right)\)
\(=76.\left(-56\right)+24.\left(-56\right)\)
\(=\left(76+24\right).-56\)
\(=100.-56\)
\(=-5600\)
a, 18.(-24) + 35.42 - 18.76 + 35.(-142)
= [ 18.(-24) - 18.76] + (35.42 + 35(-142)]
= -18.[ 24 + 76] - 35.( 142 - 42)
= -18.100 - 35. 100
= - 100.(18 + 35)
= - 100. 53
= - 5300
h, 104 : (-13) - [56 - 220 : (-4)]
= 104 : (-13) - [ 56 + 55]
= -8 - 111
= - 119
Gọi tổng trên là A
Đặt S1=1/60*20
=>1/41+1/42+1/43+...+1/60>S1=1/60*20=1/3 (1)
Đặt S2=1/80*20
=>1/61+1/62+1/63+...+1/80>S2=1/80*20=1/4 (2)
Từ (1) và (2)
=>A>1/3+1/4=7/12
=>ĐPCM (nghĩa là điều phải chứng minh)
K CHO MÌNH NHA MẤY BẠN !!
Gọi tổng trên là A
. => A=(1/41+1/42+...+1/60)+(1/61+1/62+...+1/79+1/80) >(1/60 . 20)+(1/80 . 20)
=>A>1/3+1/4=4/12+3/12=7/12
Vậy A>7/12
Hay 1/41+1/42+1/43+...+1/79+1/80>7/12
CMR 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
\(\Rightarrow\) (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
\(\Rightarrow\) (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
\(\Rightarrow\) 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
\(\RightarrowĐPCM\)
Đặt S = \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{79}+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Ta có: \(\frac{1}{41}>\frac{1}{60}\)
\(\frac{1}{42}>\frac{1}{60}\)
..............
\(\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)(1)
Lại có: \(\frac{1}{61}>\frac{1}{80}\)
\(\frac{1}{62}>\frac{1}{80}\)
............
\(\frac{1}{79}>\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\)(2)
Lấy (1) + (2) ta được:
\(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy S > 7/12 (ĐPCM)
Ta có: \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}\)
\(=4.\left(\frac{4}{20.24}+\frac{4}{24.28}+...+\frac{4}{76.80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{24}+\frac{1}{24}-\frac{1}{28}+...+\frac{1}{76}-\frac{1}{80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{80}\right)=4.\frac{3}{80}=\frac{3}{20}< 1\)
Vậy \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}< 1\)