K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

=> ( 3x+1 + 3x+2 + 3x+3 + 3x+4 + 3x+5 ) + .... + ( 3x+96 + 3x+97 + 3x+98 + 3x+99 + 3x+100 )

=> 3x.( 3 + 32 + 33 + 34 ) + ... + 3x+95.( 3 + 32 + 33 + 34 )

=> 3x.120 + 3x+5.120 + .... + 3x+95 . 120

=> 120 . ( 3x + 3x+5 + ... + 3x+95 ) chia hết cho 120 ( đpcm )

11 tháng 1 2021

=> ( 3x+1 + 3x+2 + 3x+3 + 3x+4 + 3x+5 ) + .... + ( 3x+96 + 3x+97 + 3x+98 + 3x+99 + 3x+100 )

=> 3x.( 3 + 32 + 33 + 34 ) + ... + 3x+95.( 3 + 32 + 33 + 34 )

=> 3x.120 + 3x+5.120 + .... + 3x+95 . 120

=> 120 . ( 3x + 3x+5 + ... + 3x+95 ) chia hết cho 120 ( đpcm )

1 tháng 1 2017

Gọi tổng \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)là A, ta có :

\(A=3^x\times3+3^x\times3^2+3^x\times3^3+...+3^x\times3^{100}\)

\(=3^x\left[3^0\left(3+3^2+3^3+3^4\right)\right]+...+3^x\left[3^{96}\left(3+3^2+3^3+3^4\right)\right]\)

\(=3^x\left[3^0\left(3+9+27+81\right)\right]+...+3^x\left[3^{96}\left(3+9+27+81\right)\right]\)

\(=3^x\left(3^0\times120\right)+...+3^x\left(3^{96}\times120\right)\)

\(=3^x\times3^0\times120+...+3^x\times3^{96}\times120\)

\(=120\left[3^x\left(3^0+...+3^{96}\right)\right]⋮120\)

Vậy A chia hết cho 120

11 tháng 5 2021

$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$ 
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$

4 tháng 3 2019

=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...

=3^x.120+(3^x+4).120+...

=120(3^x+3^x+4...) chia hết cho 120

=>x^3+1...(đề bài) chia hết cho 120

(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)

Nhớ k cho mk đó!

6 tháng 2 2016

3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100

3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)

(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)

(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)

 

30 tháng 4 2020

2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)

Vì \(x\)\(x+1\)và \(x+2\)là 3 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)

mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)

hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )

3 tháng 5 2020

Mình cảm ơn ạ !!!