Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)
=(133-12).(11mu n)+12.(144 mu n)
=133.(11 mu n)+(144mu n -11 mu n).12
ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)
=>(144 mu n)-(11 mu n)chia het cho 133
=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
ta có n^2+n+6
=n^2+2.n.1/2+(1/2)^2+6-(1/2)^2
=(n+1/2)^2+23/4
ta có (n+1/2)^2 không chia hết cho 5(1)
23/4 không chia hết cho 5(2)
từ (1),(2) suy ra(n+1/2)^2+23/4 không chia hết cho 5
Ta có: 3n+2 - 2n+4 + 3n + 2n
= 3n . 32 - 2n . 24 + 3n + 2n
= 3n . 9 - 2n . 16 + 3n + 2n
= (3n . 9 + 3n) - (2n . 16 - 2n)
= 3n . (9 + 1) - 2n . (16 - 1)
= 3n . 10 - 2n . 15
Do n nguyên dương nên 3n chia hết cho 3, 2n chia hết cho 2
=> 3n . 10 chia hết cho 30, 2n . 15 chia hết cho 30
=> 3n . 10 - 2n . 15 chia hết cho 30
=> đpcm