K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Ta có : ( 3n )100 = ( 3n )4.25 = 34.25.n4.25 = 8125 . n100 chia hết cho 81

Vậy ( 3n )100 chia hết cho 81 ( dpcm )

6 tháng 11 2018

Ta có: 

\(\left(3n\right)^{100}=3^{100}.n^{100}\)

\(=3^4.3^{96}.n^{100}\)

\(=81.3^{96}.n^{100}⋮81\)

Vậy ....

6 tháng 11 2018

Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)

Vậy...

~~~~~~~~~~~~~

23 tháng 10 2015

- nếu n là số lẻ ta có (n+1) là số chẵn và (3n+2) là số lẻ nên tích (n+1). (3n+2) là một số chẵn (a) chia hết cho 2

- nếu n là số chẵn ta có (n+1) là số lẻ và (3n+2) là số chẵn nên tích (n+1). (3n+2) là một số chẵn (b) chia hết cho 2

Từ (a) và (b) thì tích (n+1).(3n+2) chia hết cho 2 với mọi N là số tự nhiên

vì trong 1 tích chỉ cần 1 số nhiên chia hết thì cá tích chia hết 

vì có (3n + 2) nên cả tích đó chia hết cho 2

12 tháng 10 2020

Với n=1 => \(10^1-9.1-1=0\) chia hết cho 81

Giả sử \(10^k-9k-1\) chia hết cho 81

Ta cần c/m \(10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(10^{k+1}-9k-1=10.10^k-9k-9-1=\)

\(=\left(10^k-9k-1\right)+9.\left(10^k-1\right)\)

Ta có \(10^k-9k-1\) chia hết cho 81

Ta có \(9\left(10^k-1\right)=9x999....99\) (k chữ số 9)\(=9.9\left(1111...111\right)=81.1111...11\)  (k chữ số 1) chia hết cho 81

\(\Rightarrow10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(\Rightarrow10^n-9n-1\) chia hết cho 81 với mọi n

14 tháng 2 2018

- Vì n là số tự nhiên nên n = 5k hoặc n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4 .( k thuộc N )

+) Với n = 5k thì n chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 1 thì 4n + 1 = 4 x ( 5k + 1 ) + 1 = 20k + 4 + 1 = 20k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 2 thì 2n + 1 = 2 x ( 5k + 2 ) + 1 = 10k + 4 + 1 = 10k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 3 thì 3n + 1 = 3 x ( 5k + 3 ) + 1 = 15k + 9 + 1 = 15k + 10 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Vậy với mọi số tự nhiên n thì n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

12 tháng 1 2021

Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. TH 2: n chia cho 5 dư 1 thì n = 5k +1 Þ 4n +1= 20k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH3: n chia cho 5 dư 2 thì n = 5k +2 Þ 2n +1= 10k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH4: n chia cho 5 dư 3 thì n = 5k +3 Þ 3n +1= 15k + 10 chia hết cho 5 Þ tích chia hết cho 5. TH 5: n chia cho 5 dư 4 thì n = 5k +4 Þ n +1= 5k + 5 chia hết cho 5 Þ tích chia hết cho 5. Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.

9 tháng 4 2019

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

9 tháng 4 2019

cảm ơn Nguyễn Công Tỉnh

26 tháng 2 2020

Tham khảo tại đây nhé bạn Yumani Jeng

https://olm.vn/hoi-dap/detail/99483398563.html