Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
A = 1 + 3 + 32 + 33 + ... + 311 C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 ) C = 1 ( 1 + 3 + 32 ) + 33 ( 1 + 3 + 32 ) + ... + 39 ( 1 + 3 + 32 ) C = 1 . 13 + 33 . 13 + ... + 39 . 13 C = 13 ( 1 + 33 + ... + 39 ) chia hết cho 13 => C chia hết cho 13 ( đpcm )
s= 1 -3 +32 - 33 -...+32014-32015
=(1-3+32)-(33-34+35)-...-(32013-32014+32015)
=(1-3+32)-33(1-3+32)-...-32013(1-3+32)
=7-33 *7-...-32013*7
=7*(1-33-...-32013)
có 7 chia hết cho 7,(1-33-...-32013) là số nguyên
=> s chia hết cho 7 (đpcm)
Ta có : 2 + 22 + 23 + ..... + 230
= (2 + 22 + 23) + ..... + (228 + 229 + 230)
= 2.(1 + 2 + 22) + ...... + 228(1 + 2 + 22)
= 2.7 + ..... + 228.7
= 7(2 + ..... + 228) chia hết cho 7
2+22+23+24+...+230=(2+22+23)+(24+25+26)+...+(228+229+230)
= 2(1+2+22)+24(1+2+22)+...+228(1+2+22)=
= (1+2+22)(2+24+...+228)=7.(2+24+...+228) => Chia hết cho 7
M=75.(42013+42012+...+43+42+1)+25
=75.42013 + 75.42012 + ...+ 75.43 + 75.42 + 75.1 + 25
=75.4.42012 + 75.4.42011 +...+ 75.4.42 + 75.4.4 + (75+25)
=300.42012 + 300.42012 +...+ 300.42 + 300.4 + 100
=100.( 3.42012 + 3.42012 +...+ 3.42 + 3.4 + 1) --- điều cần phải chứng minh
Ta có:
3+32+33+34+35...+396
=(3+32+33+34+35+36)+(37+38+39+310+311+312)+...+(391+392+393+394+395+396)
=(1+3+32+33+34+35).3+(1+3+32+33+34+35).37+...+(1+3+32+33+34+35).391
=(1+3+32+33+34+35).(3+37+...+391)
=1092.(3+37+...+391)
=7.156.(3+37+...+391) chia hết cho 7
Vậy 3+32+33+34+...+396 chia hết cho 7