K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

 

đặt A=2^4n+1

=16^n.2

16^n đồng dư với 6 (mod 10)

=>16^n.2 đồng dư với 2.6=12=2(mod 10)

A chia 10 dư 2=10k+2(k thuộc N)

đặt B=3^4n+1

=81^n.3 đồng dư với 1.3=3 ( mod 10)

=>B chia 10 dư 3=10p+3(p thuộc N)

ta có 3^2^4n+1  + 3^3^4n+1     +5

=3^10k+2    +  3^10p+3     +5

3^10 đồng dư với 1 (mod 11)

=>3^10k+2 đồng dư với 1.3^2=9(mod 11)

=>3^10p+3 đồng dư với 1.3^3=27(mod 11)

5 đồng dư với 5(mod 11)

=> 3^2^4n+1    + 3^3^4n+1    +5 đồng dư với 9+27+5=41(mod 11)

=> đề sai! phải là 2^3^4n+1 mới đúng

26 tháng 10 2015

a) Vì 24k+1 = 24k.2 = ....6k .2

Mà ...6k có tận cùng là 6 nên 24k+1 có tận cùng là 2

=> ....2 + 3 có tận cùng là 5 nên chia hết cho 5

26 tháng 10 2015

Còn câu b bạn viết lại đề đúng đi

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

20 tháng 1 2015

chỉ giải phần a thôi nhé ! ( vì phần b và c vẫn dạng đó )

a) ( 24n + 1 ) + 3 =  16n + 4

xét thấy 16n có tận cùng là 6 nên cộng thêm 4 sẽ có tận cùng bằng 0 => biểu thức đã cho chia hết cho 5

8 tháng 1 2017

ai k mình sẽ rất giỏi

20 tháng 9 2018

a) 74n-1 \(⋮\)74-1=2401-1=2400\(⋮\)5

b) 34n+1+2=(32)2n.3+2=92n.3+2

Ta có: 9≡-1(mod 5)

=> 92n≡1(mod 5)

=> 92n.3≡3(mod 5)

=>92n.3+2≡0(mod 5)

=>92n.3+2\(⋮\)5

Máy mình bị lỗi nhấn đọc tiếp ko được!

Cho mình xin lỗi!

Chúc bạn học tốt!

24 tháng 2 2021

câu a: 7^4n = (7^4)^n

vì 7^4 tận cùng là 1, mà số tận cùng 1 mũ n vẫn luôn tận cùng là 1 => số đó trừ 1 sẽ tận cùng là 0 nên luôn chia hết cho 5