K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Ta có: \(A=3^1+3^2+3^3+....+3^{30}\)

               \(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)

                = 3.(1+3+32)+34.(1+3+32)+....+328.(1+3+32)

                = 3.13 + 34.13 + .....+ 328.13

                = 13.(3+34+...+328) chia hết cho 13

Vậy A chia hết cho 13

2 tháng 7 2018

\(A=3^1+3^2+3^3+....+3^{30}\)

\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)

\(=3\left(1+3+3^2\right)+3^3\left(1+2+3\right)+...+3^{28}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^3+...+3^{28}\right)\)

\(=13\left(3+3^3+...+3^{28}\right)\)\(⋮\)\(13\)

Vậy  A chia hết cho 13

8 tháng 10 2019

\(a^3+b^3=2\left(c^3-8d^3\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)

\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)

\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)

Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)

Tích 3 số nguyên liên tiếp chia hết cho 3 nên 

\(\left(a-1\right)a\left(a+1\right)⋮3\)

\(\left(b-1\right)b\left(b+1\right)⋮3\)

\(\left(c-1\right)c\left(c+1\right)⋮3\)

\(\left(d-1\right)d\left(d+1\right)⋮3\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)

hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)

Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)

1 tháng 10 2018

-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.

 => a3-a chia hết cho 3.

-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.

=> a3+b3+c-(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.

=> nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.chúc bn hok tốt

28 tháng 12 2015

P=7(1+7+72+73+...+72015)

P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]

P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]

P=7[400(1+74+...+72012)]

P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)

28 tháng 12 2015

làm ơn làm phước tick cho mình lên 210 điểm hỏi đáp đi

10 tháng 2 2019

Ta có A = 1/2+2/22+3/23+4/24+...+100/2100

<=> A = 1/2+2/4+3/9+4/16+...+100/2100

31 tháng 7 2018

8^7-2^18

=2097152-262144

=1835008 chia hết 14

31 tháng 7 2018

Ta có: \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(16-2\right)=2^{17}.14\)

\(2^{17}.14⋮14\Rightarrow8^7-2^{18}⋮14\)

31 tháng 12 2018

Câu 1 đề sai

Câu 2: Ta có:\(8^7-2^{18}\)

                 \(=\left(2^3\right)^7-2^{18}\)

                 \(=2^{3.7}-2^{18}\)

                 \(=2^{21}-2^{18}\)

                 \(=2^{17}\left(2^4-2\right)\)

                 \(=2^{17}.14⋮14\)

Nên \(8^7-2^{18}⋮14\)

Vậy \(8^7-2^{18}⋮14\)

31 tháng 12 2018

Cảm ơn anh Incursion_03 đã nhắc nhở nha.

Các bạn cho mình sửa đề chút ạ :

\(\frac{a-b+c}{a+2b-c}\)

10 tháng 4 2018

Mình làm được bài 1, 2, 3 rồi. Các bạn giúp bài 4 nhé ! THANK YOU

10 tháng 4 2018

Có: \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2z-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)

\(\Rightarrow A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\)

Dấu "="....

17 tháng 11 2021

Bài 1 : 

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

Bài 2 :

2.Chứng minh rằng

212+312+213+214+315 chia hết cho 7

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32