K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

Câu hỏi tương tự         

19 tháng 11 2016

Ta có : \(3^{1999}=\left(3^4\right)^{499}.3^3=81^{499}.27\Rightarrow\) số bị trừ có tận cùng là 7

\(7^{1997}=\left(7^4\right)^{499}.7=2041^{499}.7\Rightarrow\) số trừ có tận cùng là 7

Vì : \(7-7=0\Rightarrow3^{1999}-7^{1997}⋮5\)

Vậy ...

19 tháng 11 2016

ta có : 31999 - 71997 = (34)499 . 33 - (74)499 . 7

= (...1) . (...7) - (...1) . 7

= (...7) - (...7)

= (...0) chia hết cho 5

Vậy 31999 - 71997 chia hết cho 5

26 tháng 3 2016

Ta có :

31999 = 32000 : 3 = ( 32 )1000 : 3 = 91000 : 3 = ........1 : 3 = ........7

71997 = 71996 . 7 = ( 72 )998 . 7 = 49998 . 7 = .......1 . 7 = ........7

Do đó : 31999 - 71997 = .......7 - ......7 = ........0

Vì .......0 chia hết cho 5 => 31999 - 71997 chia hết cho 5

26 tháng 3 2016

ta có:31999=31996x33=(34)499x33

  vì 34 có tận cùng là 1 nên (34)499 cũng có tận cùng là 1. và 33 có tận cùn là 7

suy ra:(34)499x3có tận cùng là 7.

 ta có: 71997=71996x7=(74)499x7

vì 74 có tận cùng là 1 nên (74)499 cũng có tận cùng là 1.

suy ra:(74)499x7 có tận cùng là 7

suy ra:(34)499x33-(74)499x7 có tận cùng là 0 hay 31999-71997  có tận cùng là 0

mà số có tận cùng là 0 thì chia hết cho 5

vậy 31999-71997 chia hết cho 5

1 tháng 2 2016

tìm các chữ số tận cùng của hai số trên ta có :

A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)

26 tháng 2 2016

sử dụng chữ số tận cùng nha bạn !!!

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

29 tháng 3 2017

Ta có: \(A=999993^{1999}-555557^{1997}\)

\(=999993^{1998}.999993-555557^{1996}.555557\)

\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)

\(=\left(...9\right).999993-\left(...1\right).555557\)

\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)

Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).

\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)

29 tháng 3 2017

Cho \(A=999993^{1999}-555557^{1997}\)

\(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)

\(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)

Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)

\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)

15 tháng 11 2014

Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số. 

Ta có :

 \(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)

\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)

Vậy  A có chữ số tận cùng là 0 nên A chia hết cho 5

 

6 tháng 4 2017

Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5

Ta có: (1) 9999931999=(9999934)499. 9999933

Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1

9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)

(2) 5555571997= (5555574)499 .7

Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7

 Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ