Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 312 đồng dư với 10 mod 37
=> 324 = (312)2 đồng dư với 102 = 100 mod 37 ; 100 đồng dư với -1 mod 37
=> 324 đồng dư với -1 mod 37
336 = (312)3 đồng dư với 103 = 1000 mod 37 ; 1000 đồng dư 1 mod 37
=> 336 đồng dư với 1 mod 37
=> 312 + 324 + 336 + 34 đồng dư với 10 + (-1) + 1 + 34 mod 37 ;
=> 312 + 324 + 336 + 34 đồng dư với 44 mod 37 hay 7 mod 37
Vậy 312 + 324 + 336 + 34 không chia hết cho 37
Sai đề
6^4 + 324 = 1620
1620 chia hết cho 20 và 81 nên 6^4 +324 chia hết cho 20 và 81.
Bài này dễ vậy còn gì nữa.
`a)35^6-35^5`
`=35^5(35-1)`
`=34.35^5 vdots 34`
`b)43^4+43^5`
`=43^4(43+45)`
`=88.43^4`
`=2.44.43^4 vdots 44`
Ta có :\(35^6-35^5=35^5.\left(35-1\right)\)
\(=35^{35}.34\) \(⋮34\)
Vậy.........
Ta có 35^6 -35^5
=35^5. 35-35^5.1
=35^5.(35-1)
=35^5.34
Vì 34 chia hết cho 34 nên 34.35^5 chia hết cho 34
Vậy 35^6-35^5 chia hết cho 34
Ta thấy:
a) \(35^6-35^5=35^5\cdot\left(35-1\right)=35^5\cdot34\)
Do 34 chia hết cho 34
=> 355 * 34 chia hết cho 34
=> 356 - 355 chia hết cho 34 ( đpcm )
b) \(43^4+43^5=43^4\cdot\left(1+43\right)=43^4\cdot44\)
Do 44 chia hết cho 44
=> 434 * 44 chia hết cho 44
=> 434 + 435 chia hết cho 44 ( đpcm )
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15