K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

301293 chia hết cho 9 nênđề bài vô lý

7 tháng 2 2017

301293 chia cho 9 dư 1 nên khi trừ 301293 cho 1 thì 301293 - 1 chia hết cho 9 ( ĐPCM )

Được giúp đỡ mọi người là một niềm vui rất lớn. Ta nên biết trân trọng nó.

Mình rất vui khi được giúp các bạn.

27 tháng 10 2017

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

27 tháng 10 2017

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

21 tháng 2 2016

a-2:3 => a-2+3:3 =>a+1:3

a-4:4 => a-4+5:5 => a+1:5

a-6:7 => a-6+7:7 => a+1:7

Vậy a+1 là bọi của 3,5,7

a nhỏ nhất nên a+1 nhỏ nhất

a+1 là BCNN(3;5;7)=105

a=104

2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4

Ta có cd chia hết cho 4 nên abcd chia hết cho 4

Câu b tương tự

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

3 tháng 9 2017

cảm ơn nhiều nhé

Kha,hỏi bài nói luôn đi bày đặt

26 tháng 11 2019

??????????