K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

2x^2+4x+2+1>0

2(x+1)^2+1>0 (đúng) 

suy ra đpcm 

5 tháng 5 2017

\(2x^2+4x+3\)

\(=2\left(x^2+2x+\frac{3}{2}\right)\)

\(=2\left(x^2+2x+1^2-1^2+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x+1\right)^2+1>0\forall x\)

3 tháng 10 2021

\(4x^2+4x+\frac{3}{2}\)

\(=4x^2+4x+1+\frac{1}{2}\)

\(=\left(2x+1\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)(đpcm)

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

4 tháng 4 2016

2x^2+4x+3=2(x^2+2x+1)+1=2(x+1)^2+1>0 với mọi x

4 tháng 4 2016

2x2+4x+3=2(x2+2x+3/2)=2(x2+2x+1+1/2)=2(x+1)2+1>0 với mọi x

19 tháng 6 2017

a) x^2 + x +1 = x^2 + 1/2x+1/2x + 1/4 + 3/4= x(x+1/2)+1/2(x+1/2) + 3/4

=( x+1/2)^2 + 3/4

Do (x+1/2)^2 lớn hơn hoặc  = 0 vs mọi x => (x+1/2)^2 + 3/4 >0 =>  x^2 + x +1 > 0 với mọi x

2 tháng 10 2017

Câu a :

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)

Vậy biểu thức trên luôn lớn hơn 0 với mọi x

2 tháng 10 2017

Làm Full cho you nhé,bạn kia sai r:

\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)

\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

b: \(4y^2+2y+1\)

\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)

\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)

\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)

c: \(-2x^2+6x-10\)

\(=-2\left(x^2-3x+5\right)\)

\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)

`#3107.101107`

a)

`x^2 + x + 1`

`= (x^2 + 2*x*1/2 + 1/4) + 3/4`

`= (x + 1/2)^2 + 3/4`

Vì `(x + 1/2)^2 \ge 0` `AA` `x`

`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`

Vậy, `x^2 + x + 1 > 0` `AA` `x`

b)

`4y^2 + 2y + 1`

`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`

`= (2y + 1/2)^2 + 3/4`

Vì `(2y + 1/2)^2 \ge 0` `AA` `y`

`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`

Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`

c)

`-2x^2 + 6x - 10`

`= -(2x^2 - 6x + 10)`

`= -2(x^2 - 3x + 5)`

`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`

`= -2[ (x - 3/2)^2 + 11/4]`

`= -2(x - 3/2)^2 - 11/2`

Vì `-2(x - 3/2)^2 \le 0` `AA` `x`

`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`

Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`

10 tháng 7 2017

\(\left(x-3\right)\left(4x+5\right)+19=4x^2-12x+5x-15+19=4x^2-7x+4\)

\(=\left(2x\right)^2-2.\frac{7}{4}.2x+\frac{49}{16}+\frac{15}{16}=\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}>0\Leftrightarrow\left(x-3\right)\left(4x+5\right)+19>0\)(đpcm)

Chứng minh rằng: 2x^2 + 4x + 3 0 với mọi x, 2x^2 + 4x + 3 0 với mọi x,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

( Câu trả lời bằng hình ảnh minh họa )

24 tháng 11 2021

\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)