\(2^{n+2}.3^n+5n-4⋮25\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

\(2^{n+2}.3^n+5n-4\)

\(\Rightarrow2^n.2^2.3^n+5n-4\)

\(\Rightarrow\left(2.3\right)^n.2^2+5n-4\)

\(\Rightarrow6^n.4-4+5n\)

\(\Rightarrow4.\left(6^n-1\right)+5n\)

ai vào giải tiếp giúp mk

12 tháng 6 2017

Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )

12 tháng 6 2017

\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)

\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)

\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)

31 tháng 12 2017

đềbài sai hay sao vậy bạn, nếu n=1 => ..=2 chia hết cho 25 ???

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

14 tháng 11 2016

Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)

Ta thấy (1) chia hết cho 5 (2)

(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)

Ta chứng minh (1) chia hết cho 8

Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8

Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k+ 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8

=> (1) chia hết cho 8 (4)

Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120

15 tháng 6 2017

\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0

a)

\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)

\(\Delta=1+16=17\)

\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)

\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại

Vậy A < 3

b) Chứng minh quy nạp

(13+23+.....+n3)=(1+2+3+...+n)2=> KL

15 tháng 6 2017

b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)

ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)

\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)

Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)

\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)

do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)