K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Tham khảo:
 

Ta có: 2^n+1;2^n;2^n-1  là 3 số tự nhiên liên tiếp

=>một trong 3 số trên chia hết cho 3

mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3

mặt khác: 2^n ko chia hết cho 3

=>2^n-1 chia hết cho 3

CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!

 

30 tháng 11 2021

Cảm ơn bạn nha :3

8 tháng 3 2017

Vì 2n+1 là số nguyên tố với n > 2

=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)

29 tháng 11 2021
Hãy trả lời câu hỏi này Năm nay tuổi mẹ gấp 5 lần tuổi con . Tính tuổi của mỗi người,biết rằng mẹ hơn con 32 tuổi
19 tháng 8 2016

lớp mấy mà không biết làm hả

19 tháng 8 2016

năm nay lên lớp 6

17 tháng 4 2016

câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2

câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ

mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha

hộ

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:
$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$

$\Rightarrow$ đặt $2^{2n+1}=3k+2$ với $k$ tự nhiên.

Do đó:

$2^{2^{2n+1}}+3=2^{3k+2}+3=8^k.4+3\equiv 1^k.4+3\pmod 7$

$\equiv 7\equiv 0\pmod 7$
Mà với $n$ nguyên dương thì $2^{2^{2n+1}}+3>7$ nên $2^{2^{2n+1}}+3$ là hợp số.