\(2^{\left(x^2\right)}=\left(2^x\right)^x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

\(2^{x^2}=2^{x.x}=\left(2^x\right)^x\)

Vì (2x)x = 2 x.x

x.x = x2

--> 2(x^2) = (2x)x

11 tháng 3 2017

a)Ta thấy:

\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)

\(=\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrowđpcm\)

b)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)

c)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)

11 tháng 3 2017

a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)

Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 5 2019

Bài 1:

Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.

Sửa đề:

\(A=(x+3)^3-(x+9)(x^2+27)\)

\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)

\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)

\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)

\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)

\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)

\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)

\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)

\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 5 2019

Bài 2:

Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)

CMR: \(\frac{a}{x}=\frac{b}{y}\)

Bạn lưu ý viết đề bài chính xác hơn.

-----------------------------

Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)

\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)

\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)

Ta có đpcm.

19 tháng 3 2017

\(a^2nha\)

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).

15 tháng 5 2017

khó zay . mik ko làm dược k cho mik ik miik kb cho

12 tháng 4 2024

⑴⑵⑶⑷⑸⑹⑺⑻⑼0-

12 tháng 2 2017

a) Ta có: \(\left|x\right|+\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\) ( do mỗi số hạng \(\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

b) Vì \(x\ge0\)

\(\Rightarrow x+x+1+x+2+x+3=6x\)

\(\Rightarrow4x+6=6x\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=3\)

Vậy x = 3

21 tháng 3 2019

Bài 1 :

\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)

\(\Leftrightarrow-2x-2-3+3x=4\)

\(\Leftrightarrow x=4+2+3=9\)

Bài 2 :

Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)

Lại có :

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)

Từ (1)(2) , ta có :

\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)

21 tháng 3 2019

Nguyen Ribi Nkok Ngok Khôi Bùi nguyễn ngọc dinh Phùng Tuệ Minh Akai Haruma buithianhtho ?Amanda? Nguyễn Thành Trương Nguyễn Ngô Minh Trí