\(^{4n+1}\)+3\(^{4n}\)+2 là hợp số với mọi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5

Vì 16n có số tận cùng là 6;  =>16n.2 có  số tận cùng là 2

81n có số tận cùng là 1

=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:
$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$

$\Rightarrow$ đặt $2^{2n+1}=3k+2$ với $k$ tự nhiên.

Do đó:

$2^{2^{2n+1}}+3=2^{3k+2}+3=8^k.4+3\equiv 1^k.4+3\pmod 7$

$\equiv 7\equiv 0\pmod 7$
Mà với $n$ nguyên dương thì $2^{2^{2n+1}}+3>7$ nên $2^{2^{2n+1}}+3$ là hợp số.

25 tháng 5 2020

kmmdjkxmcmkjkdkddfffdfdg

25 tháng 5 2020

Mình nghĩ đề là 33n+1

33n+2+5.33n+1 

33n.32+5.33n.2

33n.9+33n.10

=>33n.19\(⋮\)19

24 tháng 4 2017

Chứng minh chia hết cho 2:

Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)

Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)

Theo Fecma vì 11 là số nguyên tố nên

\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)

Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Kết hợp với (2) ta được

\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)

Tương tự ta có:

\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)

Ta lại có: 

\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10l+3\)

Kết hợp với (4) ta được

\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)

Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)

Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)

14 tháng 2 2018

Bài này là đê thi HSG khối 8 đó ko phải khối 7 đâu!

Ta có:

A= \(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)\)

  \(=25^n+5^n-18^n-12^n\)

  * \(=\left(25^n-18^n\right)-\left(12^n-5^n\right)\text{ do đó A chia hết cho 7}\)

  * \(=\left(25^n-12^n\right)-\left(18^n-5^n\right)\text{ do đó A chia hết cho 13}\)  

Do (7;13)=1 nên A chia hết cho 91 

NOTE: mk đã lm theo cách lớp 7 đó! lớp 8 thì phải dùng đồng dư thức cơ! nhưng mk lâu rồi chưa lm lại ko biết có đúng ko mong bn kiểm tra rồi thông báo cho mk sớm nhất có thể nhé!!

19 tháng 10 2016

Ta có :

\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

chia hết cho \(2,3,4,5.\)

b ) Cần chứng minh 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*

là một số chính phương .

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt :   \(n^2+3n=y\) thì 

            \(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)

         \(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*