Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d thuộc ƯC(12n+1,30n+2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=-1;1\)
=>\(\frac{12n+1}{30n+2}\)là p/số tối giản
vậy...(đccm)
Gọi d thuộc ưc (12 + 1 , 30N + 2 )
=> \(\frac{12n+1}{30n+2}\): d
=> \(\frac{60n+5}{60n+4}\): d
=> ( 60n + 5 - 60n + 4 ) : d
=> 1 : d
=> d = - 1 ; 1
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
k mình nha
Ta có:
n2 + n + 2016
= n.(n + 1) + 2016
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> n.(n + 1) + 2016 chỉ có thể tận cùng là 6; 8; 2
=> n.(n + 1) + 2016 không chia hết cho 5
=> n2 + n + 2016 không chia hết cho 5
=> đpcm
Ủng hộ mk nha ^_-
Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)
Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)
.............................
\(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)
Ta có:
\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
\(12\frac{5}{17}-5\frac{2}{17}\)
\(=12+\frac{5}{17}-5-\frac{2}{17}\)
\(=\left(12-5\right)+\left(\frac{5}{17}-\frac{2}{17}\right)\)
\(=7+\frac{3}{17}\)
\(=\frac{119}{17}+\frac{3}{17}\)
\(=\frac{122}{17}\)
\(=7\frac{5}{17}\)
Bài này mà cần gì chi tiết
Ai tích mk mk tích lại cho
-20 = -20
16 - 36 = 25 - 45
(2 + 2)^2 - (2 + 2) 9 = 5^2 - (5 x 9)
(2 + 2)^2 - 2(2 + 2)9/2 = 5^2 - (2 x5 x 9/2) (nhân 2 và chia 2)
(2 + 2)^2 - 2(2 + 2)9/2 + (9/2)^2 = 5^2 - (2 x5 x 9/2) + (9/2)^2 (cộng thêm (9/2)^2 vào hai vế)
Hai vế của phương trình trên đều ở dạng (a^2 - 2ab + b^2)
(2 + 2 - 9/2)^2 = (5 - 9/2) ^2 (vì a^2 - 2ab + b^2 = (a - b)^2)
2 + 2 - 9/2 = 5 - 9/2
2 + 2 = 5 (điều cần chứng minh).
ta có:
-20 = -20
16 - 36 = 25 - 45
(2 + 2)^2 - (2 + 2) 9 = 5^2 - (5 x 9)
(2 + 2)^2 - 2(2 + 2)9/2 = 5^2 - (2 x5 x 9/2) (nhân 2 và chia 2)
(2 + 2)^2 - 2(2 + 2)9/2 + (9/2)^2 = 5^2 - (2 x5 x 9/2) + (9/2)^2 (cộng thêm (9/2)^2 vào hai vế)
Hai vế của phương trình trên đều ở dạng (a^2 - 2ab + b^2)
(2 + 2 - 9/2)^2 = (5 - 9/2) ^2 (vì a^2 - 2ab + b^2 = (a - b)^2)
2 + 2 - 9/2 = 5 - 9/2
2 + 2 = 5 (điều cần chứng minh).