Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
2222=7.318-4, do đó 2222=-4(mod7)
5555=7.793+4,do đó 5555 = 4(mod7)
=>2222^5555+5555^2222=(-4)^5555+4^2222(mod7)
mà (-4)^5555+4^2222=-4^2222(4^3333-1)=-4^2222[(4^3)^1111-1]=-4^2222(64^1111-1)
lại có:64=1(mod7) do đó 64^1111=1(mod7)
=>64^1111-1=1-1(mod7)
hay 64^1111-1 chia hết cho 7
vậy 2222^5555+5555^2222 chia hết cho 7(d9pcm)
liikke nhé bn!
\(x\left(\dfrac{124124}{125125}-1\right)=\dfrac{2222}{5555}:\left[\left(\dfrac{2010}{2121}-1\right):\left(\dfrac{4040}{4141}-1\right)\right]\)
\(x\left(\dfrac{124}{125}-1\right)=\dfrac{2}{5}:\left(-\dfrac{37}{707}:\dfrac{-1}{41}\right)\)
\(-\dfrac{1}{125}x=\dfrac{2}{5}:\dfrac{1517}{707}\)
\(-\dfrac{1}{125}x=\dfrac{1414}{7585}\)
\(x=\dfrac{1414}{7585}:\dfrac{-1}{125}\\ x=\dfrac{-35350}{1517}\)
Ta có:2222 chia 7 dư 3
=>2222 đồng dư với -4(mod 7)
=>2222-(-4) chia hết cho 7
=>2226 chia hết cho 7
=>đpcm
\(\left(\frac{13}{5}x\frac{11}{20}-\frac{11}{10}\right):\frac{11}{40}=\left(\frac{143}{100}-\frac{110}{100}\right):\frac{11}{40}=\frac{33}{100}:\frac{33}{120}=\frac{33}{100}x\frac{120}{33}=\frac{6}{5}\)
Ta có : 2222 \(\equiv\) (mod 7) hay 2222 \(\equiv\) (mod 7) ;
5555 \(\equiv\) (mod7)\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv\left[\left(-4\right)^{5555}+4^{2222}\right]\)(mod 7)
\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv-4^{2222}.\left(4^{3333}-1\right)\)(mod 7)
Lại có \(4^{3333}=\left(4^3\right)^{1111}=64^{1111}\), mà \(64\equiv1\)(mod 7) nên \(4^{3333}\equiv1\)(mod 7)
\(\Rightarrow4^{3333}-1\equiv0\)(mod 7)\(\Rightarrow-4^{2222}.\left(4^{3333}-1\right)\equiv0\)(mod 7).
Do vậy \(\left(2222^{5555}+5555^{2222}\right)\equiv0\)(mod 7)
hay \(\left(2222^{5555}+5555^{2222}\right)⋮7\)(đpcm).
mình áp dụng công thức a^m +hoặc - b^m =(a+hoặc -b).M
cách 1
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn)
(a-b)^n = a^n+...............+-b^b(n lẻ)
(2222^5555) + (5555^2222)
=(7.317 +3)^5555 + (7.793+4)^2222
=7K+3^5555 +7P+4^2222
=7K+7P +(3^5)^1111 + (4^2)^1111
=7P+7k +(259)U chia hết cho 7
bạn có thể tham khảo 2 cách