Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2020}-2^{2017}\\ =2^{2017}\cdot2^3-2^{2017}\cdot1\\ =2^{2017}\left(2^3-1\right)\\ =2^{2017}\cdot7\)
Chia hết cho 7
Ta có :
\(2^{2020}-2^{2017}=2^{2017}\cdot\left(2^3-1\right)=2^{2017}\cdot7\)
Vậy \(2^{2020}-2^{2017}\) chia hết cho 7
TL:
2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019
=> A + 2018 A = 1 +2018^2019
=> 2019 A = 1 + 2018^2019
=> 2019 A - 1 = 2018^2019
=> 2019 A -1 là 1 lũy thừa của 2018
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Ta có :
\(\frac{1}{5^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
\(....\)
\(\frac{1}{2017^2}< \frac{1}{2016.2017}=\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{2017^2}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=\frac{1}{4}-\frac{1}{2017}< \frac{1}{4}\) (đpcm)
Ta có: 1/52 + 1/62 + ... + 1/20172 < 1/4.5 + 1/5.6 + ... + 1/2016.2017
Mà: 1/4.5 + 1/5.6 + ... + 1/2016.2017 = 1/4 - 1/2017
=> 1/52 + 1/62 + ... + 1/20172 < 1/4
\(M=2^{2018}+2^{2020}=2^{2018}.\left(1+2^2\right)=2^{2018}.5=2^{2008}.\left(2^{10}.5\right)=2^{2008}.\left(1024.5\right)=2^{2008}.5120⋮5120\)
\(2^{2018}+2^{2020}\)
\(=2^{2018}\left(1+2^2\right)\)
\(=2^{2018}.5\)
\(=2^{2010}.5120⋮5120\)
\(\RightarrowĐPCM\)
\(2^{2020}-2^{2017}\)
\(=2^{2017}.2^3-2^{2017}\)
\(=2^{2017}\left(2^3-1\right)\)
\(=2^{2017}.7⋮7\)
\(\Rightarrow2^{2020}-2^{2017}⋮7\)
Vậy \(2^{2020}-2^{2017}⋮7\)