\(⋮\)7

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

\(2^{2020}-2^{2017}\\ =2^{2017}\cdot2^3-2^{2017}\cdot1\\ =2^{2017}\left(2^3-1\right)\\ =2^{2017}\cdot7\)  

Chia hết cho 7

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

13 tháng 1 2018

a)Ta có:

S = 2 +  22  +  23  +........+  2100

=> S = (2+23) + (22+24) +............+ (298+2100)

S = 2(1+22) + 22(1+22​) +.......... + 298(1+22​)

S = (1+22).(2+22+.......+298)

S=5.(2+22+.......+298) chia hết cho 5 (đpcm)

Vậy S chia hết cho 5

b) Ta có

4a+3b=4a+7b-4b=4(a-b)+7b

Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7

=>4a+3b chia hết cho 7(đpcm)

Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.

chưa chinh xác

23 tháng 10 2016

Câu hỏi của Mạc Thị Huyền Trang

23 tháng 10 2016

A = 7 + 73 + 75 + ...+ 72017 \(⋮\) 35

A = (7 + 73) + (75 + 77) +...+ (72015 + 72017)

A = 7.( 1+ 72) + 75. ( 1 + 72) +....+ 72015.(1 + 72)

A = 7.(1 + 49) + 75. ( 1 + 72) +....+ 72015.(1 + 72)

A = 7. 50 + 75. 50 + ....+ 72015. 50

A = 350 + 75 . 50 + ......+ 72015 . 50 \(⋮\) 35

Vậy A \(⋮\) 35

mk làm thế này ko biết có đúng ko, nếu ko đúng bỏ qua cho mk nha

S=22+23+24+...+22003+22004

2S=23+24+25+...+22004+22005

2S—S=(23+24+25+...+22004+22005)—(22+23+24+...+22003+22004)

S=22005—22

Còn lại tự làm

16 tháng 7 2017

Ta có : S=2+22+23+....+22004(1)

2S=(2+22+.....+22004).2

2S=22+23+.....+22005(2)

=>(2)-(1)=2S-S=(22+23+......+22005)-(2+22+.....+22004)

S=22005-2

BAN DAT LAM THIEU DO

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk