\(2^{1995}\)<\(5^{863}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

2^1995 > 5^863

29 tháng 7 2017

Theo mk thì 21995 > 5863

\(A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A>\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}=\frac{100}{505}>\frac{100}{600}=\frac{1}{6}\)

Tương tự 

\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm

20 tháng 9 2016

a)Ta có:320=(32)10=910

             230=(23)10=810

       Vì 810<910

               Suy ra:230<320

Ta có : S =\(\frac{1}{2^2}\)\(+\)\(\frac{1}{3^2}\)\(+\)...\(+\)\(\frac{1}{9^2}\)

              = \(\frac{1}{2.2}\)\(+\)\(\frac{1}{3.3}\)\(+\)...\(+\)\(\frac{1}{9^2}\)

\(\Rightarrow\)S > \(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)...\(+\)\(\frac{1}{9.10}\)

            = \(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)..\(+\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)

            = \(\frac{1}{2}\)\(-\)\(\frac{1}{10}\)

\(\Rightarrow\)S <  \(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)...\(+\)\(\frac{1}{8.9}\)

            =\(1\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)...\(+\)\(\frac{1}{8}\)\(-\)\(\frac{1}{9}\)

            = \(1\)\(-\)\(\frac{1}{9}\)\(\frac{8}{9}\)

Vậy \(\frac{2}{5}\)< S < \(\frac{8}{9}\)(đpcm)

Chúc bạn học tốt

18 tháng 6 2017

Ta thấy: \(\frac{2}{3^2}=\frac{2}{3.3}< \frac{2}{2.4}=\frac{1}{2}-\frac{1}{4}\)

\(\frac{2}{5.5}< \frac{2}{4.6}=\frac{1}{4}-\frac{1}{6}\)\(;...;\frac{2}{2007.2007}< \frac{2}{2006.2008}=\frac{1}{2006}-\frac{1}{2008}\)

\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}\)

Ta có:\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{2}-\frac{1}{2008}=\frac{1004-1}{2008}=\frac{1003}{2008}\)

\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1003}{2008}\)(đpcm)

K mình nè!

7 tháng 1 2018

đúng rồi

15 tháng 2 2024

S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)

Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:

\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)

Cộng vế với vế ta có: 

S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)

\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)

Cộng vế với vế ta có:

\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)

Kết hợp (1) và (2) ta có: 

1 < S < 2 (đpcm)