\(⋮\)2 và 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

4 tháng 7 2019

Em học đồng dư chưa?

Nếu học rồi thì có thể làm theo cách này:

a) \(6\equiv1\left(mod5\right)\)

=> \(6^{100}\equiv1^{100}\equiv1\left(mod5\right)\)

=> \(6^{100}-1\equiv1-1\equiv0\left(mod5\right)\)

=> \(6^{100}-1⋮5\)

Câu b, c làm tương tự

 Còn nếu chưa học kiến thức đồng dư

a) \(6^{100}\)có chữ số tận cùng là 6

=> \(6^{100}-1\)có chữ số tận cùng là 5

=> \(6^{100}-1\) chia hết cho 5

b) \(21^{20}\) có chữ số tận cùng là 1

\(11^{10}\)có chữ số tận cùng là 1

=> \(21^{20}-11^{10}\) có chữ số tận cùng là 0

=> \(21^{20}-11^{10}\) chia hết cho 2 và 5

c) \(10^{10}-1=100...00-1\)( có 10 chữ số 0)

\(=99..9\)

(có 9 chữ số 9)

=> \(10^{10}-1\) chia hết cho 9

26 tháng 10 2019

a, 76 +75 - 74 = 74(72 + 7 - 1) = 74 . 55 = 74 . 5 . 11 

Vậy 76 +75 - 74 chia hết cho 11

b, Ta có: 106 - 57 = 26 . 56 - 57 = 56(26 - 5) = 56 . 59

Vậy.... 

1 tháng 7 2018

a, \(12^{1980}-2^{1600}\)

\(=\left(2^4\right)^{495}-\left(2^4\right)^{400}\)

\(=16^{495}-16^{400}\)

\(=\overline{...6}-\overline{...6}\)

\(=\overline{...0}⋮10\left(đpcm\right)\)

b, \(19^{2005}+11^{2006}\)

\(=19\cdot19^{2004}+\overline{...1}\)

\(=19\cdot\left(19^2\right)^{1002}+\overline{...1}\)

\(=19\cdot361^{1002}+\overline{...1}\)

\(=19\cdot\overline{...1}+\overline{...1}\)

\(=\overline{...9}+\overline{...1}\)

\(=\overline{...0}⋮10\left(đpcm\right)\)

1 tháng 7 2018

(đpcm) là j vậy bạn

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

Bớt xàm đi ông

31 tháng 7 2017

a)121980-2100 =(...6)-(...6)=...chia hết 10

b)191981+111980=(...9)+(...1)=...0chia hết 10

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...

27 tháng 2 2017

A = 2 + 23 + 25 + ..... + 251
A = ( 2 + 25 ) + ( 23 + 27 ) + ..... + ( 247 + 251 ) + ( 245 + 249 )
A = 1 ( 2 + 25 ) + 22 ( 2 + 25 ) + ... + 244 ( 2 + 25 ) + 246 ( 2 + 25 )
A = 2 + 25 ( 1 + 22 + ... + 244 + 246 )
A = 2 + 32 ( 1 + 22 + ... + 244 + 246 )
A = 34 ( 1 + 22 + ... + 244 + 246 ) \(⋮\) 34

27 tháng 2 2017

A = 2 + 23 + 25 + ..... + 251
A = ( 2 + 23 ) + ( 25 + 27 ) + ..... + ( 247 + 249 ) + ( 251 + 253 )
A = 1 ( 2 + 23 ) + 24 ( 2 + 23 ) + ... + 246 ( 2 + 23 ) + 250 ( 2 + 23 )
A = ( 2 + 23 ) ( 1 + 24 + ... + 246 + 250 )
A = 2 + 8 ( 1 + 24 + ... + 246 + 250 )
A = 10 ( 1 + 24 + ... + 246 + 250 ) 10
c) Vì A chia hết cho 10 nên :
=> A có tận cùng là 0