Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Với n=1 => 3.1+1 chia hết cho 11-2.1
=> 4 chia hết cho 9
-> sai
đặt n = 3k+r (với r = 0, 1, 2)
2^n = 2^(3k+r) = 8^k.2^r
8 chia 7 dư 1 nên 8^k chia 7 dư 1
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N
cũng từ trên ta thấy 2^n -1 chia hết cho 7 khi r = 0, tức là n = 3k , k thuộc N, k > 2
- - - - -
20ⁿ-1 = (20-1)[20^(n-1) + 20^(n-1) +..+1] = 19.p chia hết cho 19 (1*)
đặt n = 2k (do n chẳn)
16ⁿ-13ⁿ = 16^(2k) - 3^(2k) = 256^k - 9^k = (256-9)[256^(k-1).9 + 256^(k-2).9^2+..]
= 247.q = 19.13.q chia hết cho 19 (2*)
từ (1*) và (2*) => A = 29ⁿ - 1 + 16ⁿ - 3ⁿ chia hết cho 19
mặt khác: 16ⁿ-1 = 16^(2k) - 1 = 256^k - 1 = (256-1)[256^(k-1) + 256^(k-1) +..+1] = 255m = 17.15.m chia hết cho 17 (3*)
20ⁿ-3ⁿ = (20-3)[20^(n-1).3 + 20^(n-2).9 +..+3^(k-1)] = 17.p chia hết cho 17 (4*)
từ (3*) và (4*) => A chia hết cho 17
từ hai điều trên => A chia hết cho BCNN[19,17] = 323
đúng nhưng hơi dài