Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3^4=81\) có chữ số tận cùng là 1.
=> 2003\(^4\)có chữ số tận cùng là 1
=> \(2003^{400}\)có chữ số tận cùng là 1
lại có: \(2001^{4000}\)có chữ số tận cùng là 1
=> \(2003^{4000}-2001^{4000}\)có chữ số tận cùng là 0
=> \(2003^{4000}-2001^{4000}\) chia hết cho 2 và chia hết cho 5.
913+1=...0 chia hết cho 2 và 5
Vậy 913+1 chia hết cho 2 và 5
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
Nếu Chia hết cho 10 thì chia hết cho cả 2 và 5
Ta có: 316 = (32)8 = 98
Ta có: nếu 9chẵn tận cùng là 1
=> 98 = (..........1)
=> 98 - 1 = (.......1 - 1)
98 = (............0) nên chia hết cho 10
Vậy 316 chia hết cho 10
13!+9^10-1
ta có 13! có chữ số tận cùng là 0
9^10-1=(9^2)^5=(....1)^5-1=...1-1=...0
=>13!+9^10-1 có chữ số tận cùng là 0
=> 13!+9^10-1 chia hết cho 2 và5
910=92.92...92=81.81...81=...1
=>910-1=..1-1=...0
13! có tận cùng =0 =>13!+910-1 có tận cùng =0 sẽ chia hết cho 2;5
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
20032000 có chữ số tận cùng là 1
20012000 có chữ số tận cùng là 1
1-1=0 nên 20032000 -20012000 chia hết cho 2 và 5
(20034)500-(20014)500=(....1)-(....1)=0=> 2003^2000-2001^2000 chia hết cho 2 và 5