K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d

=>2k+1 chia hết cho d và 2k+3 chia hết cho d

=>(2k+1)-(2k+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2

Mà 2k+1 và 2k+3 là số lẻ 

=>ƯCLN(2k+1,2k+3)=1

=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau

6 tháng 9 2015

 gọi ước chung của 2 sô d và 2 số lẻ liên tiếp là a và a+2

=>(a+200-a chia hết cho d

=>2 chia hết cho d

=>d=1 hoặc d=2

mà 2 số đó là số lẻ nên d\(\ne\)2

=>d=1

=> hai số đó nguyên tố cùng nhau

11 tháng 11 2015

a,gọi 2 STN liên tiếp là a và a+1

gọi ước chung của hai số là d. Ta có:

       (a+1)-a chia hết cho d

  =>1 chia hết cho d=>d=1

Vậy a và a+1 nguyên tố cùng nhau

b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d

Ta có: (a+2)-a chhia hết cho d

      =>2 chia hết cho d

=>d=1 hoặc 2

d khác 2 vì d là ước của số lẻ

Vậy d=1 =>a và a+2 nguyên tố cùng nhau

tick đi

19 tháng 1 2016

Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau

19 tháng 1 2016

Vì 2 số tự nhiên liên tiếp ko chia hết cho nhau

25 tháng 12 2015

Gọi 2 số đó là 2k+1 và 2k+3 (k \(\in\)N).

Đặt ƯCLN(2k+1, 2k+3)=d

=> (2k+3)-(2k+1) chia hết cho d

=> 2k+3-2k-1 = 2 chia hết cho d

=> d \(\in\)Ư(2)={1; 2}

Mà d \(\ne\)2 (2k+1 và 2k+3 đều lẻ)

=> ƯCLN(2k+1, 2k+3)=d=1

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau (đpcm).

25 tháng 12 2015

Gọi ƯCLN(a;a+2)=d(a lẻ)

Ta có: a chia hết cho d

a+2 chia hết cho d

=>a+2-a chia hết cho d

=>2 chia hết cho d mà a lẻ

nên ƯCLN(a;a+2)=1

Vậy thỏa mãn đề 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau

28 tháng 4 2016

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

và d là ước chung lớn nhất của 2k+1 và 2k+3(d thuộc N*)

Vì 2k+1 chia hết cho d

  và 2k+3 chia hết cho d

Nên:(2k+3) - (2k+1) chia hết cho d

 hay 2 chia hết cho d

Vì d thuộc N* =>d=1

Vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau.

Lời giải mik tâm huyết lắm mới viết á!k cho mik đi các bạn!

28 tháng 4 2016

Gọi x là số lẻ bé , x+2 là số lẻ lớn . ( x là số lẻ ) 

Gọi d là ƯCLN(x;x+2) = 1 

Ta có : 

x chia hết cho  d 

x+2 chia hết cho d 

=> x+2 - x chia hết cho d 

    2x+2 - 2x+1 chi hết cho d 

             1 chia hết cho d => d = 1 

                            => ƯCLN(x;x+2) = 1 hay 2 số lẻ liên tiếp thì nguyên tố cùng nhau 

21 tháng 8 2016

gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

21 tháng 8 2016

Hai số nguyên tố cùng nhau là hai số lẻ có BCNN là tích của chúng

7 và 9 là hai số lẻ liên tiếp cũng là hai số nguyên tố cùng nhau

BCNN= 63

ƯCLN=1

9 tháng 12 2018

Gọi 2 số lẻ liên tiếp đó là : 2n+1 và 2n+3

Gọi UCLN(2n+1,2n+3) là d

Ta có : 2n+1 chia hết cho d và 2n+3 chia hết cho d

=> 2n+3 - 2n+1 chia hết cho d

 Hay : 2 chia hết cho d => d là 1 hoặc 2 mà 2n+1 và 2n+ 3 là số lẻ nên d ko thể =2. Vậy d =1

=> 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau

9 tháng 12 2018

Mình cảm ơn bạn Nguyễn Ngọc Thúy nhiều nha. Bạn giải đúng rùi mình sẽ nhớ công ơn của bạn mãi mãi. Mình sẽ kết bạn với bạn nha. Thank you