\(\in\) N )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Gọi \(ƯCLN\left(2n+1,6n+5\right)\) là a

Theo đề ra , ta có :

\(\begin{cases}2n+1⋮a\\6n+5⋮a\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}6n+3⋮a\\6n+5⋮a\end{cases}\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮a\)

\(\Rightarrow\left(6n+5-6n-3\right)⋮a\)

\(\Rightarrow2⋮a\) Vì : 2n + 1 và 6n + 5 là số lẻ \(\RightarrowƯCLN\left(2n+1,6n+5\right)=1\)

Vì : có ƯCLN = 1 => 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau

Vậy ...

10 tháng 11 2016

hahahehe

 

a) Ta có: (3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1.

Các câu sau chứng minh tương tự.

k nha pls

16 tháng 6 2016

Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)

Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và  2n+1 chia hết cho d

<=> n(n+1) chia hết cho d và  2n+1 chia hết cho d

<=> n+ n chia hết cho d và n(2n+1) chia hết cho d

<=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d

=> (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d \(\in\) N => d=1

Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N

16 tháng 6 2016

Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)

=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d

=> n(n+1) chia hết cho d, 2n+1 chia hết cho d

=> n2+n chia hết cho d, n(2n+1) chia hết cho d

=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> 2n2+n-n2-n chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N => d=1

=> ƯCLN( n(n+1)/2, 2n+1)=1

Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N

13 tháng 12 2017

Bài Làm 

Gọi ƯCLN ( 4n + 1 và 6n + 2 ) bằng D

=> \(\hept{\begin{cases}4n+1⋮D\\6n+2⋮D\end{cases}\Rightarrow\hept{\begin{cases}12n+3⋮D\\12n+4⋮D\end{cases}}}\)

=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮\)D

=> 1 \(⋮\)D

=> D = 1

Vì D = 1 nên 4n + 1 và 6n + 2 là số nguyên tố cùng nhau

13 tháng 12 2017

Đặt ƯCLN ( 4n + 1 , 6n + 2 ) = d

=> \(\hept{\begin{cases}4n+1⋮d\\6n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}3.\left(4n+1\right)⋮d\\2.\left(6n+2\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}\)=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮d\)=> 1 \(⋮d\)

=> d thuộc Ư ( 1 ) = 1

ƯCLN ( 4n + 1 , 6n + 2 ) = 1

Vậy hai số 4n + 1 và 6n + 2 là hai số nguyên tố cùng nhau ( dpcm )

16 tháng 7 2016

Đề bài sai : 

Ta phải có \(6n-10>0\) và \(5-3n>0\)

\(\Rightarrow n>\frac{5}{3}\) và  \(n<\frac{5}{3}\)

=> k có giá trị nào của n thoả mãn đề bài.

17 tháng 7 2016

uk, đề bài thầy ra sai^^

27 tháng 2 2016

a)Gọi ƯCLN(2n+5;3n+7)=d

=>2n+5 chia hết cho d=>3(2n+5) chia hết cho d hay 6n+15 chia hết cho d

=>3n+7 chia hết cho d=>2(3n+7) chia hết cho d hay 6n+14 chia hết cho d

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d hay d=1

=>ƯCLN(2n+5;3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

=>(2n+5)/(3n+7) là p/s tối giản

b)Gọi ƯCLN(6n-14;2n-5)=a

=>6n-14 chia hết cho a

=>2n-5 chia hết cho a =>3(2n-5) chia hết cho a hay 6n-15 chia hết cho a

=>(6n-14)-(6n-15) chia hết cho a

(6n-6n)-(14-15) chia hết cho a

=>1 chia hết cho a hay a=1

=>ƯCLN(6n-14;2n-5)=1

=>6n-14 và 2n-5 là 2 số nguyên tố cùng nhau

=>(6n-14)/(2n-5) là p/s tối giản

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~