K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

30 tháng 11 2016

Ta có :

\(1+a+a^2+....+a^{63}\)

\(=\left(1+a\right)+a^2\left(1+a\right)+....+a^{62}\left(1+a\right)\)

\(=\left(1+a\right)\left(1+a^2+a^4+....+a^{62}\right)\)

\(=\left(1+a\right)\left[\left(1+a^2\right)+a^4\left(1+a^2\right)+.....+a^{60}\left(1+a^2\right)\right]\)

\(=\left(1+a\right)\left(1+a^2\right)\left(1+a^4+....+a^{60}\right)\)

.....

\(=\left(1+a\right)\left(1+a^2\right).....\left(1+a^{32}\right)\)

30 tháng 11 2016

Có \(\left(1+a\right)\left(1+a^2\right)...\left(1+a^{32}\right)=\frac{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)

\(=\frac{\left(a^2-1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)

\(...\)

\(=\frac{\left(a^{32}-1\right)\left(a^{32}+1\right)}{a-1}\)

\(=\frac{a^{64}-1}{a-1}\)

\(=\frac{\left(a-1\right)\left(a^{63}+a^{62}+...+a^2+a+1\right)}{a-1}\)

\(=a^{63}+a^{62}+...+a^2+a+1\)

Vậy ...

30 tháng 11 2016

ta có (a-1)(1+a+a2+......+a63)=a64-1

        (a-1)(a+1)(a2+1)....(a32+1)=a64-1

13 tháng 7 2015

đề sai 

tui noid thiệt

21 tháng 7 2021

a) Ta có x + y + z = 0

=> x + y = -z

=> (x + y)3 = (-z)3

=> x3 + y3 + 3xy(x + y) = -z3

=> x3 + y3 + z3 = -3xy(x + y) 

=> x3 + y3 + z3 = -3xy(-z)

=> x3 + y3 + z3 = 3xyz (đpcm) 

15 tháng 11 2017

giả sử \(a_1\left(1-a_2\right);a_2\left(1-a_3\right);...;a_9\left(1-a_1\right)>\frac{1}{4}\)

\(\Rightarrow a_1\left(1-a_2\right).a_2\left(1-a_3\right)...a_9\left(1-a_1\right)>\left(\frac{1}{4}\right)^9\)

\(a_1\left(1-a_1\right)=a_1-a^2_1=\frac{1}{4}-\left(\frac{1}{2}-a_1\right)^2\le\frac{1}{4}\)

CMTT \(a_2\left(1-a_2\right);a_3\left(1-a_3\right);...;a_9\left(1-a_9\right)\le\frac{1}{4}\)

=> gt sai=>phải có 1hs bé hơn 1/4

15 tháng 11 2017

đề đăng sai nhiều quá

30 tháng 8 2020

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)

b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)

Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

2.

a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được 

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(...\)

\(A=2^{32}-1\left(ĐPCM\right)\)

b) Ta có

\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)

=\(201\left(-1+5+9-13\right)=0\)

Suy ra ĐPCM

3

a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)

c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp 

30 tháng 8 2020

Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích