![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(M< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow M< 1\left(đpcm\right)\)
\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)
\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)
\(c,\) Vì \(a< b\Rightarrow2a< a+b\)
\(c< d\Rightarrow2c< c+d\)
\(m< n\Rightarrow2m< m+n\)
\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Không có điều kiện gì à?Nếu n = 1 \(C>1>\frac{1}{4}\) vậy c/m làm gì?
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{\left(n+1\right)-1}{\left(n+1\right)!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{\left(n+1\right)}{\left(n+1\right)!}-\dfrac{1}{\left(n+1\right)!}\)
\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}-\dfrac{1}{\left(n+1\right)!}\)
( Vì \(\dfrac{3}{3!}=\dfrac{1}{2!};\dfrac{4}{4!}=\dfrac{1}{3!};...;\dfrac{n+1}{\left(n+1\right)!}=\dfrac{1}{n!}\))
\(=1-\dfrac{1}{\left(n+1\right)!}< 1\)
Đặt \(S\left(n\right)=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
Ta có \(S\left(1\right)=\dfrac{1}{2!}=\dfrac{1}{2}=1-\dfrac{1}{2!}\)
\(S\left(2\right)=S\left(1\right)+\dfrac{2}{3!}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}=1-\dfrac{1}{3!}\)
\(S\left(3\right)=S\left(2\right)+\dfrac{3}{4!}=\dfrac{5}{6}+\dfrac{1}{8}=\dfrac{23}{24}=1-\dfrac{1}{4!}\)
Từ đây, ta có \(S\left(n\right)=1-\dfrac{1}{\left(n+1\right)!}\) và hiển nhiên \(S\left(n\right)< 1\) do \(\dfrac{1}{\left(n+1\right)!}>0\)
Vậy ta có đpcm