K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2022

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{\left(n+1\right)-1}{\left(n+1\right)!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{\left(n+1\right)}{\left(n+1\right)!}-\dfrac{1}{\left(n+1\right)!}\)

\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}-\dfrac{1}{\left(n+1\right)!}\)

( Vì \(\dfrac{3}{3!}=\dfrac{1}{2!};\dfrac{4}{4!}=\dfrac{1}{3!};...;\dfrac{n+1}{\left(n+1\right)!}=\dfrac{1}{n!}\))

\(=1-\dfrac{1}{\left(n+1\right)!}< 1\)

27 tháng 7 2022

Đặt \(S\left(n\right)=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)

Ta có \(S\left(1\right)=\dfrac{1}{2!}=\dfrac{1}{2}=1-\dfrac{1}{2!}\)

\(S\left(2\right)=S\left(1\right)+\dfrac{2}{3!}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}=1-\dfrac{1}{3!}\)

\(S\left(3\right)=S\left(2\right)+\dfrac{3}{4!}=\dfrac{5}{6}+\dfrac{1}{8}=\dfrac{23}{24}=1-\dfrac{1}{4!}\)

Từ đây, ta có \(S\left(n\right)=1-\dfrac{1}{\left(n+1\right)!}\) và hiển nhiên \(S\left(n\right)< 1\) do \(\dfrac{1}{\left(n+1\right)!}>0\)

Vậy ta có đpcm

 

29 tháng 1 2016

mokona chưa ngủ à

29 tháng 1 2016

Em mới học lớp 6 thui à

3 tháng 3 2018

t lười lắm để link thôi =]]

3 tháng 3 2018

Bạn làm như thế nào mà được link vậy

17 tháng 10 2018

\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(M< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow M< 1\left(đpcm\right)\)

\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)

\(c,\)\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)

=>đpcm

16 tháng 1 2019

Không có điều kiện gì à?Nếu n = 1 \(C>1>\frac{1}{4}\) vậy c/m làm gì?

7 tháng 4 2019

Chắc là n>=3 đó