Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (a-1)2 ≥ 0 ∀a
<=> a2-2a+1 ≥ 0
<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)
<=> a2+2a+1 ≥ 4a
<=> (a+1)2 ≥ 4a
CM tương tự ta đc
(b+1)2 ≥ 4b
(c+1)2 ≥ 4c
Nhân các vế với nhau ta có
[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)
<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)
\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\) \(\Rightarrow2S=1-\dfrac{1}{2n+1}\)
\(\Rightarrow S=\dfrac{n}{2n+1}\)
Ta có : \(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
ta được \(\dfrac{1}{1.3}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}\right);\dfrac{1}{3.5}=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}\right);\dfrac{1}{5.7}=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)
\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\) vậy \(S=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{n}{2n+1}\)
bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)
a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)
\(\Rightarrow A< \frac{1}{2}\)(đpcm)
b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1+1-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)
\(=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
\(\frac{1}{2^2}\)\(+\)\(\frac{1}{4^2}\)\(+\)\(\frac{1}{6^2}\)\(+\)..... \(+\)\(\frac{1}{\left(2n\right)^2}\)
= \(\frac{1}{4}\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)< \)\(\frac{1}{4}\)\(\left(1+\frac{1}{1.2} +\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)
= \(\frac{1}{4}\)\(\left(1+1-\frac{1}{n}\right)< \frac{1}{2}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)
\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)
=> A < 2
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}-\dfrac{1}{4n+2}< \dfrac{1}{2}\)
đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
=> 2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
<=> 2A=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+.....+\dfrac{1}{2n-2}-\dfrac{1}{2n+1}\)
<=>2A=\(1-\dfrac{1}{2n+1}\)
<=> A=\(\left(1-\dfrac{1}{2n+1}\right)\)\(.\dfrac{1}{2}\)
<=> A=\(\dfrac{1}{2}-\dfrac{1}{2\left(2n+1\right)}\)
=>\(A< \dfrac{1}{2}\) (đpcm)