Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vế trái = \(\left(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{500}\right)\)
= \(\frac{1}{501}+\frac{1}{502}+...+\frac{1}{1000}\)= Vế phải
=> đpcm
\(A=\dfrac{1000-\left(1+\dfrac{1}{2}+...+\dfrac{1}{999}+\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{1000-1-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{99-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{999}\right)+\left(1-\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=1\)
\(S=1+\left(2-3+5+6-.....-998+999\right)+1000\)
\(S=1001+S1\)
VOI \(S1=O\)
VAY \(S\)CHIA HET 11