K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)

Giữ nguyên phân số \(\frac{49}{50}\)

Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)

\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)

30 tháng 4 2015

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}

8 tháng 4 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}< 1\)

= \(\dfrac{1}{1}-\dfrac{1}{50}< 1\)

= \(\dfrac{50}{50}+\dfrac{-1}{50}< 1\)

= \(\dfrac{49}{50}< 1\)

Vậy \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

8 tháng 4 2017

1/1.2 = 2 đã lớn hơn 1 rồi @@

20 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

20 tháng 4 2017

ta có :

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}< 1\)

29 tháng 2 2016

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

19 tháng 4 2016

49/50

1 tháng 4 2016

ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50

= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/49-1/50

=1/1-1/50

= 49/50

1 tháng 4 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

DD
12 tháng 7 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)